Skip to main content
Log in

Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and tranverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules.

CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the α2, β and γ subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADAMS, B. A., TANABE, T., MIKAMI, A., NUMA, S. & BEAM, K. G. (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346, 569–72.

    Google Scholar 

  • ANDERSSON, K., COHN, A. H. & MEISSNER, G. (1994) High affinity [3H]PN200–100 and [3H]ryanodine binding to rabbit and frog skeletal muscle homogenates. Am. J. Physiol. 266, C462–5.

    Google Scholar 

  • ASHLEY, C. C., MULLIGAN, I. P. & LEA, T. J. (1991) Ca2+ and activation mechanisms in skeletal muscle. Quart. Rev. Biophys. 24, 1–73.

    Google Scholar 

  • AUFFRAY, C. & ROUGEON, F. (1980) Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–14.

    Google Scholar 

  • BEAM, K. G., KNUDSON, J. M. & POWELL, J. A. (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320, 168–70.

    Google Scholar 

  • BEAN, B. P. (1989) Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367–84.

    Google Scholar 

  • BERS, D. M. & STIFFEL, V. M. (1993) Ratio of ryanodine and dihydropyridine receptors in cardiac and skeletal muscle and implications for excitation-contraction coupling. Am. J. Physiol. 264, C1587–2600.

    Google Scholar 

  • BLOCK, B. A., IMAGAWA, T., CAMPBELL, K. P. & FRANZINI-ARMSTRONG, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107, 2587–600.

    Google Scholar 

  • BOSSE, E., REGULLA, S., BIEL, M., RUTH, P., MEYER, M. E., FLOCKERZI, V. & HOFMANN, F. (1990) The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett. 267, 153–6.

    Google Scholar 

  • BRANDT, N. R., CASWELL, A. H., WEN, S-R & TALVEN-HEIMO, J. A. (1990) Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads. J. Membr. Biol. 113, 237–51.

    Google Scholar 

  • CAMPBELL, K. P., LEUNG, A. T. & SHARP, A. H. (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 11, 425–30.

    Google Scholar 

  • CASTELLANO, A., WEI, X., BIRNBAUMER, L. & PEREZ-REYES, E. (1993) Cloning and expression of a third calcium channel β subunit. J. Biol. Chem. 268, 3450–5.

    Google Scholar 

  • CASWELL, A. H. & BRANDT, N. R. (1989) Does activation occur by direct mechanical coupling of transverse tubules to sarcoplasmic reticulum? Trends Biochem. 14, 161–5.

    Google Scholar 

  • CATTERALL, W. A. (1991) Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels. Cell 64, 871–4.

    Google Scholar 

  • CHEN, S. R., VAUGHAN, D. M., AIREY, J. A., CORONADO, R. & MACLENNAN, D. H. (1993) Functional expression of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum in COS-1 cells. Biochemistry 32, 3743–53.

    Google Scholar 

  • DULHUNTY, A. F., JUNANKAR, P. R. & STANHOPE, C. (1992) Extra-junctional ryanodine receptors in the terminal cisternae of mammalian skeletal muscle fibres. Procs. Roy. Soc. London Ser. B. 247, 69–75.

    Google Scholar 

  • EDGE, M. B. (1970) Development of apposed sarcoplasmic reticulum at the T system and sarcolemma and the change in orientation of triads in skeletal muscle. Dev. Biol. 23, 634–50.

    Google Scholar 

  • ELLIS, S. B., WILLIAMS, M. E., WAYS, N. R., BRENNER, R., SHARP, A. H., LEUNG, A. T., CAMPBELL, K. P., MCKENNA, E., KOCH, W. J. & HUI, A. (1988) Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP sensitive calcium channel. Science 241, 1661–4.

    Google Scholar 

  • FERGUSON, D. G., SCHWARTZ, H. W. & FRANZINI-ARMSTRONG, C. (1984) Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study. J. Cell Biol. 99, 1735–42.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. & JORGENSEN, A. O. (1994) Structure and development of e-c coupling units in skeletal muscle. Annu. Rev. Physiol. 56, 509–34.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., PINCON-RAYMOND, M. & RIEGER, F. (1991) Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Developmental Biology 146, 364–71.

    Google Scholar 

  • HULLIN, R., SINGER-LAHAT, D., FREICHEL, M., BIEL, M., DASCAL, N., HOFMANN, F. & FLOCKERZI, V. (1992) Calcium channel β subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J. 11, 885–90.

    Google Scholar 

  • IMAGAWA, T., SMITH, J. S., CORONADO, R. & CAMPBELL, K. P. (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J. Biol. Chem. 262, 16636–43.

    Google Scholar 

  • INUI, M., SAITO, A. & FLEISCHER, S. (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262, 1740–7.

    Google Scholar 

  • JAY, S. D., ELLIS, S. B., MCCUE, A. F., WILLIAM, M. E., VEDVICK, T. S., HARPOLD, M. M. & CAMPBELL, K. P. (1990) Primary structure of the γ subunit of the DHP sensitive calcium channel of skeletal muscle. Science 248, 490–2.

    Google Scholar 

  • JORGENSEN, A. O., SHEN, A. C.-Y., ARNOLD, W., LEUNG, A. T. & CAMPBELL, K. P. (1989) Subcellular distribution of the 1,4-Dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J. Cell Biol. 109, 135–47.

    Google Scholar 

  • KLOCKNER, U., ITAGAKI, K., BODI, I. & SCHWARTZ, A. (1992) β-subunit expression is required for cAMP-dependent increase of cloned cardiac and vascular calcium channel currents. Pflugers Arch. 420, 413–15.

    Google Scholar 

  • LACERDA, A. E., KIM, H. S., RUTH, P., PEREZ-REYES, E., FLOCKERZI, V., HOFMANN, F., BIRNBAUMER, L. & BROWN, A. M. (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352, 527–30.

    Google Scholar 

  • LAI, F. A., ERICKSON, H. P., BLOCK, B. A. & MEISSNER, G. (1987) Evidence for a junctional-feet-ryanodine receptor complex from sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 143, 704–9.

    Google Scholar 

  • LAI, F. A., ERICKSON, H. P., ROUSSEAU, E., LIU, Q. Y. & MEISSNER, G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–20.

    Google Scholar 

  • LORY, P., VARADI, G., SLISH, D. F., VARADI, M. & SCHWARTZ, A. (1993) Characterization of β subunit modulation of a rabbit cardiac L-type Ca2+ channel α1 subunit as expressed in mouse L cells. FEBS Lett. 315, 167–72.

    Google Scholar 

  • MARKS, A. R., TAUBMAN, M. B., SAITO, A., DAI, Y. & FLEISCHER, S. (1991) The ryanodine receptor/junctional channel complex is regulated by growth factors in a myogenic cell line. J. Cell Biol. 114, 303–12.

    Google Scholar 

  • MEISSNER, G. (1994) Ryanodine receptor/Ca2+ release channel and their regulation by endogenous effectors. Annu. Rev. Physiol. 56, 485–508.

    Google Scholar 

  • MIKAMI, A., IMOTO, K., TANABE, T., NIIDOME, T., MORI, Y., TAKESHIMA, H., NARUMIYA, S. & NUMA, S. (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–3.

    Google Scholar 

  • MISHIMA, M., TAKAI, T., IMOTO, K., NODA, M., TAKAHASHI, T., NUMA, S., METHFESSEL, C. & GORDON, J. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–11.

    Google Scholar 

  • MORI, Y., FRIEDRICH, T., TIM, M. S., MIKAMI, A., NAKAI, J., RUTH, P., BOSSE, E., HOFMANN, F., FLOCKERZI, V. & FURUICHI, T. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402.

    Google Scholar 

  • MOTOIKE, H. K., CASWELL, A. H., SMILOWITZ, H. M. & BRANDT, N. R. (1994) Extraction of junctional complexes from triad junctions of rabbit skeletal muscle. J. Muscle Research Cell Motil. 15, 493–505.

    Google Scholar 

  • NISHIMURA, S., TAKESHIMA, H., HOFMANN, F., FLOCKERZI, V. & IMOTO, K. (1993) Requirement for calcium channel beta subunit for functional conformation. FEBS Lett. 324, 283–6.

    Google Scholar 

  • PENNER, R., NEHER, E., TAKESHIMA, S., NISHIMURA, S. & NUMA, S. (1989) Functional expression of the calcium release channel from skeletal muscle ryanodine receptor cDNA. FEBS Lett. 259, 217–21.

    Google Scholar 

  • PEREZ-REYES, E., KIM, H. S., LACERDA, A. E., HORNE, W., WEI, X., RAMPE, D., CAMPBELL, K. P., BROWN, A. M. & BIRNBAUMER, L. (1989) Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340, 233–6.

    Google Scholar 

  • RIOS, E. & BRUM, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–20.

    Google Scholar 

  • RUTH, P., ROHRKASTEN, A., BIEL, M., BOSSE, E., REGULLA, S., MEYER, H. E., FLOCKERZI, V. & HOFMANN, F. (1989) Primary structure of the beta subunit of the DHP sensitive calcium channel from skeletal muscle. Science. 245, 115–18.

    Google Scholar 

  • SCHRODT, G. R. & WALKER, S. M. (1966) Ultrastructure of membranes in denervation atrophy. Am. J. Pathol. 49, 33–45.

    Google Scholar 

  • SCHNEIDER, M. F. (1994) Control of calcium release in functioning skeletal muscle fibers. Annu. Rev. Physiol. 56, 463–84.

    Google Scholar 

  • SCHNEIDER, M. F. & CHANDLER, W. K. (1973) Voltage dependent charge movement in skeletal muscle. Nature 242, 244–6.

    Google Scholar 

  • SINGER, D., BIEL, M., LOTAN, I., FLOCKERZI, V., HOFMANN, F. & DASCAL, N. (1991) The role of the subunits in the function of the calcium channel. Science 253, 1553–7.

    Google Scholar 

  • SOMMER, J. R., BOSSEN, E., DALEN, H., DOLBER, P., HIGH, T., JEWETT, P., JOHNSON, E. A., JUNKER, J., NASSAR, S., SCHERER, B., SPACH, M., SPRAY, T., TAYLOR, I., WALLACE, N. R. & WAUGH, R. (1991) To excite a heart: a bird's view. Acta Physiol. Scand. 142 (Suppl. 599), 5–21.

    Google Scholar 

  • SORRENTINO, V. & VOLPE, P. (1993) Ryanodine receptors: how many, where and why? Trends Pharmacol. Sci. 14, 98–100.

    Google Scholar 

  • SUBRAMANI, S., MULLIGAIGAN, R. & BERG, P. (1981) Expression of the mouse dihydrofolate reductase complementary plementary deoxyribonucleic acid in simian virus 40 vector. Mol. Cell. Biol. 1, 854–64.

    Google Scholar 

  • SUN, X-H., PROTASI, F. & FRANZINI-ARMSTRONG, C. (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J. Cell Biol. 129, 659–73.

    Google Scholar 

  • TAKEI, K., MIGNERY, G. A., MUGNAINI, E., SUDHOF, T. C. & DeCamilli, P. (1994) Insoitol 1,4,5-triphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron 12, 327–42.

    Google Scholar 

  • TAKEKURA, H., SUN, X.-H. & FRANZINI-ARMSTRONG, C. (1994a) Development of the excitation-contraction coupling apparatus in skeletal muscle. Peripheral and internal calcium release units are formed sequentially. J. Muscle Res. Cell Motility. 15, 102–18.

    Google Scholar 

  • TAKEKURA, H., BENNET, L., TANABE, T., BEAM, K. G. & FRANZINI-ARMSTRONG, C. (1994b) Restoration of junctional tetrads in dysgenic myotubes by dihydro-pyridine receptor cDNA. Biophys. J. 67, 793–803.

    Google Scholar 

  • TAKEKURA, H., NISHI, M., NODA, T., TAKESHIMA, H. & FRANZINI-ARMSTRONG, C. (1995) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a targeted mutation of the ryanodine receptor. Procs. Natl. Acad. Sci. USA 92, 3381–5.

    Google Scholar 

  • TAKESHIMA, H., NISHIMURA, S., MATSUMOTO, T., ISHIDA, H., KAUGAWA, K., MINAMINO, N., MATSUO, H. UEDA, M., HANAOKA, M., HIROSE, T. & NUMA, S. (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–45.

    Google Scholar 

  • TAKESHIMA, H., HNO, M., TAKEKURA, H., NISHI, M., KUNO, J., MONWA, O., TAKANO, H. & NODA, T. (1994) Excitation-contraction uncoupling and muscular degeneration in mice with a targeted mutation in the skeletal muscle ryanodine receptor. Nature 369, 556–9.

    Google Scholar 

  • TANABE, T., TAKESHIMA, H., MIKAMI, A., FLOCKERZI, V., TAKAHASHI, H., KANAGAWA, K., KOJIMA, M., MATSUO, H., HIROSE, T. & NUMA, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–18.

    Google Scholar 

  • TANABE, T., BEAM, K. G., POWELL, J. A. & NUMA, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–9.

    Google Scholar 

  • TANABE, T., MIKAMI, A., NUMA, S. & BEAM, K. G. (1990) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344, 451–3.

    Google Scholar 

  • TANABE, T., ADAMS, B. A., NUMA, S. & BEAM, K. G. (1991) Repeat I of dihydropyridine receptors is critical in determining calcium channel activation kinetics. Nature 339, 439–45.

    Google Scholar 

  • VARADI, G., LORY, P., SCHULTZ, D., VARADI, M. & SCHWARTZ, A. (1991) Acceleration of activation and inactivation by the β subunit in the skeletal muscle calcium channel. Nature 352, 159–62.

    Google Scholar 

  • WEI, X., PEREZ-REYES, E., LACERDA, A. E., SCHUSTER, G., BROWN, A. M. & BIRNBAUMER, L. (1991) Heterologous regulation of the cardiac Ca2+ channel α1 subunit by skeletal muscle β and γ subunits. Implication for the structure of cardiac L-type Ca2+ channels. J. Biol. Chem. 266, 21943–7.

    Google Scholar 

  • YOSHIDA, A., TAKAHASHI, M., NISHIMURA, S., TAKESHIMA, H. & KOKUBUN, S. (1992) Cyclic AMP-dependent phosporylation and regulation of the cardiac dihydropyridine-sensitive Ca channel. FEBS Lett. 309, 343–9.

    Google Scholar 

  • YUAN, S., ARNOLD, W. & JORGENSEN, A. O. (1991) Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J. Cell Biol. 112, 289–301.

    Google Scholar 

  • ZORZATO, F., FUJII, J., OTSU, K., PHILLIPS, M., GREEN, N. M., LAI, F. A., MEISSNER, G. & MACLENNAN, D. A. (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takekura, H., Takeshima, H., Nishimura, S. et al. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling. J Muscle Res Cell Motil 16, 465–480 (1995). https://doi.org/10.1007/BF00126431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126431

Keywords

Navigation