Skip to main content
Log in

A genetic algorithm for the automated generation of molecules within constraints

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A genetic algorithm has been designed which generates molecular structures within constraints. The constraints may be any useful function, for example an enzyme active site, a pharmacophore or molecular properties from pattern recognition or rule-induction analyses. The starting point may be random or may utilise known molecules. These are modified to ‘grow’ into families of structures which, using the evolutionary operators of selection, crossover and mutation evolve to better fit the constraints. The basis of the algorithm is described together with some applications in lead generation, 3D database construction and drug design. Genetic algorithms of this type may have wider applications in chemistry, for example in the design and optimisation of new polymers, materials (e.g. superconducting materials) or synthetic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glen, R.C., Drug News Perspect., 3 (1990) 332.

    Google Scholar 

  2. Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A. and Lederberg, J., Applications of Artificial Intelligence for Organic Chemistry-The DENDRAL Project, McGraw-Hill, New York, NY, 1980.

    Google Scholar 

  3. Payne, A.W.R. and Glen, R.C., J. Mol. Graph., 11 (1993) 74.

    Google Scholar 

  4. Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  5. Darwin, C., The Origin of Species, Dent Gordon, London, 1973.

  6. Willett, P., Three-Dimensional Chemical Structure Handling, Research Studies Papers, Taunton, 1991.

  7. Gillet, V.P., Johnson, A.P., Mata, P. and Sike, S., Tetrahedron Comput. Methodol., 3 (1990) 681.

    Google Scholar 

  8. Böhm, H.J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  9. Lewis, R.A. and Leach, A.R., J. Comput.-Aided Mol. Design, 8 (1994) 467 and references cited therein.

    Google Scholar 

  10. Brown, R.D., Jones, G., Willett, P. and Glen, R.C., J. Chem. Inf. Comput. Sci., 34 (1994) 63.

    Google Scholar 

  11. Jones, G., Brown, R.D., Clark, D.E., Willett, P. and Glen, R.C., In Forest, S. (Ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan-Kauffman, San Mateo, CA, 1993, pp. 597–602.

    Google Scholar 

  12. Weininger, D., J. Chem. Inf. Comput. Sci., 28 (1988) 31.

    Google Scholar 

  13. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 60th ed., CRC Press, Boca Raton, FL, 1980, pp. E70-E72.

    Google Scholar 

  14. Klopman, G., Namboordiri, K. and Schochet, M., J. Comput. Chem., 6 (1985) 28.

    Google Scholar 

  15. Bodor, N., Gabanyi, Z. and Wong, C., J. Am. Chem. Soc., 111 (1989) 3783.

    Google Scholar 

  16. Edward, J.T., J. Chem. Educ., 47 (1970) 261.

    Google Scholar 

  17. Pearlman, R.S., SAREA, QCPE Program No. 413, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1981.

    Google Scholar 

  18. Glen, R.C., J. Comput.-Aided Mol. Design, 8 (1994) 457.

    Google Scholar 

  19. Massey, H.S.W. and Kestelman, H., Ancillary Mathematics, Sir Isaac Pitman and Sons Ltd., London, 1964, pp. 849–852.

    Google Scholar 

  20. Connolly, M., Molecular Surface Program, QCPE Program No. 429, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1983.

    Google Scholar 

  21. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  22. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  23. Singh, U.C. and Kollman, P., GAUSSIAN, 80-UCSF, QCPE Program No. 446, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1980.

  24. Amos, R.D. and Rice, J.E., CADPAC: The Cambridge Analytic Derivatives Package, Issue 4.0, Cambridge, 1987.

  25. Stewart, J.J.P., MOPAC, Version 6.0, QCPE Program No. 455, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1992.

    Google Scholar 

  26. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  27. Hinze, J. and Jaffe, H.H., J. Am. Chem. Soc., 84 (1962) 540.

    Google Scholar 

  28. Hinze, J., Whitehead, M.A. and Jaffe, H.H., J. Am. Chem. Soc., 85 (1963) 148.

    Google Scholar 

  29. Hinze, J. and Jaffe, H.H., J. Am. Chem. Soc., 67 (1963) 1501.

    Google Scholar 

  30. Cieplak, P. and Kollman, P., J. Comput. Chem., 12 (1991) 1232.

    Google Scholar 

  31. Carbo, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.

    Google Scholar 

  32. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 60th ed., CRC Press, Boca Raton, FL, 1980, p. D-194.

    Google Scholar 

  33. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca, Raton, FL, 1991, pp. 10–210–10–211.

    Google Scholar 

  34. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca Raton, FL, 1991, p. 9–8.

    Google Scholar 

  35. Truhlar, D.G. and Politzer, P. (Eds.) Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, NY, 1981, pp. 309–334.

    Google Scholar 

  36. Giessner-Prettre, C. and Pullman, A., Theor. Chim. Acta, 25 (1972) 83.

    Google Scholar 

  37. Giessner-Prettre, C., QCPE Program No. 11, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1972.

    Google Scholar 

  38. SYBYL v. 6.1 molecular modelling package, Tripos Associates, St. Louis, MO, 1992.

  39. Senn, P., Comput. Chem., 15 (1991) 93.

    Google Scholar 

  40. Downs, G.M., Gillet, V.J., Holliday, J.D. and Lynch, M.F., J. Chem. Inf. Comput. Sci., 29 (1989) 172.

    Google Scholar 

  41. Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 8127.

    Google Scholar 

  42. Burkert, U. and Allinger, N.L., Molecular Mechanics, American Chemical Society, Washington, DC, 1982.

    Google Scholar 

  43. Norskov-Lauritsen, L. and Allinger, N.L., J. Comput. Chem., 5 (1984) 326.

    Google Scholar 

  44. Allinger, N.L., Kok, R.A. and Imam, M.R., J. Comput. Chem., 9 (1988) 591.

    Google Scholar 

  45. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca Raton, FL, 1991, pp. 9–1–9–5.

    Google Scholar 

  46. Weast, R.C. (Ed.) Handbook of Chemistry and Physics, 71st ed., CRC Press, Boca Raton, FL, 1991, pp. 9–86–9–107.

    Google Scholar 

  47. White, D.N.J. and Bovill, M.J., J. Chem. Soc., Perkin Trans. II, (1977) 1610.

    Google Scholar 

  48. Bovill, M.J., Chadwick, D.J., Sutherland, I.O. and Watkin, D., J. Chem. Soc., Perkin Trans. II, (1980) 1529.

    Google Scholar 

  49. Nelder, J.A. and Mead, R., Comput. J., 8 (1965) 308.

    Google Scholar 

  50. Mathews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W., Kaufman, B.T., Beddell, C.R., Champness, J.N.C., Stammers, D.K. and Kraut, J., J. Biol. Chem., 260 (1985) 381.

    Google Scholar 

  51. Champness, J.N.C., Kuyper, L.F. and Beddell, C.R.. In Burgen, A.S.V., Roberts, G.D.K. and Tute, M.S. (Eds.) Interaction Between Dihydrofolate Reductase and Certain Inhibitors. Molecular Graphics and Drug Design, Elsevier, Amsterdam, 1986, pp. 335–362.

    Google Scholar 

  52. Champness, J.N., Stammers, D.K. and Beddell, C.R., FEBS Lett., 199 (1986) 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glen, R.C., Payne, A.W.R. A genetic algorithm for the automated generation of molecules within constraints. J Computer-Aided Mol Des 9, 181–202 (1995). https://doi.org/10.1007/BF00124408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124408

Keywords

Navigation