Skip to main content
Log in

Extracellular matrix destruction by invasive tumor cells

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

The invasion of normal tissues and penetration of basement membranes by malignant cells is likely to require the active participation of hydrolytic enzymes. The four major groups of connective tissue proteins, glycoproteins, proteoglycans, collagen and elastin, vary in their quantitative distributions between different tissues. With the exception of elastin, they also vary qualitatively within each class, so that there are no ‘typical’ connective tissue barriers to tumor cell penetration. The matrix constituents are stabilized and organized by a variety of covalent and noncovalent interactions between the connective tissue proteins. These interactions play important roles in matrix integrity and may alter the susceptibilities of the constituents to degradative enzymes. It is likely that the complete degradation of the matrix will require the action of more than one enzyme because of differing susceptibilities to tissue proteinases. Primary and transplantable tumors produce well-characterized enzymes which may participate in invasion. These enzymes may also be involved in connective tissue turnover in other normal and pathological situations. The use of long-term tumor cell cultures has verified that tumor cells themselves are capable of producing these enzymes. However, there are many potential modulating influences opperative in vivo which are absent in culture so that details of actual mechanisms and control of digestion of complex substrates are not well understood. Recent work on the degradation by tumor cells of extracellular matrices previously produced by cultured cells is likely to shed more light on pathways of tissue destruction in vivo. Experiments with tumor cell variants of defined metastatic potentials will also be useful, but invasive and metastatic abilities are not necessarily correlated. It is unlikely that simple correlations can be drawn between the production of one particular degradative enzyme by all tumor cells and the complex biological mechanisms operative during tumor invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JC: Glycoproteins of the connective tissue matrix. Int Rev Connect Tissue Res 7: 251–322, 1976.

    Google Scholar 

  2. Rucker RB, Tinker D: Structure and metabolism of arterial elastin. Int Rev Exp Pathol 17: 1–47, 1977.

    Google Scholar 

  3. Bornstein P, Sage H: Structurally distinct collagen types. Ann Rev Biochem 49: 957–1003, 1980.

    Google Scholar 

  4. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA: The biosynthesis of collagen and its disorders. N Eng J Med 301: 13–23, 77–85, 1979.

    Google Scholar 

  5. Hay ED: Extracellular matrix. J Cell Biol 91: 205s-223s, 1981.

    Google Scholar 

  6. Mecham RP: Elastin biosynthesis: a look at the current scene. Connect Tissue Res 8: 155–160, 1981.

    Google Scholar 

  7. Roden L: Structure and metabolism of connective tissue proteoglycans. In: W Lennarz (ed) The biochemistry of glycoproteins and proteoglycans. Plenum New York, pp 267–371, 1980.

    Google Scholar 

  8. Morrison PR, Edsall JT, Miller SG: Preparation and properties of serum and plasma proteins. XIII The separation of purified fibrinogen from fraction 1 of human plasma. J Am Chem Soc 70: 3103–3108, 1948.

    Google Scholar 

  9. Hynes RO: Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci USA 70: 3170–3174, 1973.

    Google Scholar 

  10. Yamada KM, Olden K: Fibronectins adhesive glycoproteins of cell surface and blood. Nature 275: 179–184, 1978.

    Google Scholar 

  11. Bornstein P, Ash JF: Cell surface-associated structural proteins in connective tissue cells. Proc Natl Acad Sci USA 74: 2480–2484, 1977.

    Google Scholar 

  12. Jaffe EA, Mosher DF: Synthesis of fibronectin by cultured human endothelial cells. J Exp Med 147: 1779–1791, 1978.

    Google Scholar 

  13. Birdwell CR, Gospodarowicz D, Nicolson GL: Identification, localization and role of fibronectin in cultured bovine endothelial cells. Proc Natl Acad Sci USA 75: 3273–3277, 1978.

    Google Scholar 

  14. Smith HS, Riggs JL, Mosesson MW: Production of fibronectin by human epithelial cells in culture. Cancer Res 39: 4138–4144, 1979.

    Google Scholar 

  15. Chen LB, Murray A, Segal RA, Bushnell A, Walsh ML: Studies on intercellular LETS glycoprotein matrices. Cell 14: 377–391, 1978.

    Google Scholar 

  16. Stenman S, Vaheri A: Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med 147: 1054–1064, 1978.

    Google Scholar 

  17. Bray BA: Cold-insoluble globulin (fibronectin) in connective tissues of adult human lung and in trophoblast basement membrane. J Clin Invest 62: 745–752, 1978.

    Google Scholar 

  18. Stenman S, Vaheri A: Fibronectin in human solid tumors. Int J Cancer 27: 427–435, 1981.

    Google Scholar 

  19. Akiyama SK, Yamada KM, Hayashi M: The structure of fibronectin and its role in cellular adhesion. J Supramol Struct 16: 345–358, 1981.

    Google Scholar 

  20. Engvall E, Ruoslahti E: Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer 20: 1–5, 1977.

    Google Scholar 

  21. Hahn LE, Yamada KM: Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin. Cell 18: 1043–1051, 1979.

    Google Scholar 

  22. Yamada KM, Kennedy DW, Kimata K, Pratt RM: Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem 255: 6055–6063, 1980.

    Google Scholar 

  23. Hayashi M, Yamada KM: Divalent cation modulation of fibronectin binding to heparin and to DNA. J Biol Chem 257: 5263–5267, 1982.

    Google Scholar 

  24. Pearlstein E, Hoffstein ST: Fibronectin-mediated cellular adhesion to vascular subendothelial matrices. Exp Cell Res 134: 161–170, 1981.

    Google Scholar 

  25. Ali IU, Mautner V, Lanza R, Hynes RO: Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation sensitive surface protein. Cell 11: 115–126, 1977.

    Google Scholar 

  26. Yamada KM, Yamada SS, Pastan I: Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci USA 73: 1217–1221, 1976.

    Google Scholar 

  27. Kleinman HK, Klebe RJ, Martin GR: Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88: 473–485, 1981.

    Google Scholar 

  28. Furcht LT, Smith D, Wendelschafer-Crabb G, Mosher DF, Foidart JM: Fibronectin presence in native collagen fibrils of human fibroblasts. J Histochem Cytochem 12: 1319–1333, 1980.

    Google Scholar 

  29. Engvall E, Ruoslahti E, Miller EJ: Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 147: 1584–1594, 1978.

    Google Scholar 

  30. Olden K, Pratt RM, Yamada KM: Role of carbohydrate in biological function of the adhesive glycoprotein fibronectin. Proc Natl Acad Sci USA 76: 3343–3347, 1979.

    Google Scholar 

  31. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR: Laminin-A glycoprotein from basement membranes. J Biol Chem 254: 9933–9937, 1979.

    Google Scholar 

  32. Rohde H, Wick G, Timpl R: Immunochemical characterization of the basement membrane glycoprotein laminin. Eur J Biochem 102: 195–201, 1979.

    Google Scholar 

  33. Foidart JM, Bere EWJr, Yaar M, Rennard SI, Gullino M, Martin GR, Katz SI: Distribution and immunoelectron microscopic localization of laminin, a non-collagenous basement membrane glycoprotein. Lab Invest 42: 336–342, 1980.

    Google Scholar 

  34. Sakashita S, Ruoslahti E: Laminin-like glycoproteins in extracellular matrix of endodermal cells. Arch Biochem Biophys 205: 283–290, 1980.

    Google Scholar 

  35. Gospodarowicz D, Greenburg G, Foidart JM, Savion N: The production and localization of laminin in cultured vascular and corneal endothelial cells. J Cell Physiol 107: 171–183, 1981.

    Google Scholar 

  36. Wewer U, Albrechtsen R, Ruoslahti E: Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor. Cancer Res 41: 1518–1524, 1981.

    Google Scholar 

  37. Alitalo K, Kurkinen M, Vaheri A, Virtanen I, Rhode H, Timpl R: Basal lamina glycoproteins are produced by neuroblastoma cells. Nature 287: 465–466, 1980.

    Google Scholar 

  38. Terranova VP, Rohrbach DH, Martin GR: Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 22: 719–726, 1980.

    Google Scholar 

  39. Vlodavsky I, Gospodarowicz D: Respective rolesof laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 389: 304–306, 1981.

    Google Scholar 

  40. Hewitt AT, Varner HH, Silver MH, Dessau W, Wilkes CM, Martin GR: The isolation and partial characterization of chondronectin, an attachment factor for chondrocytes. J Biol Chem 257: 2330–2334, 1982.

    Google Scholar 

  41. Hewitt AT, Kleinman HK, Pennypacker JP, Martin GR: Identification of an adhesion factor for chondrocytes. Proc Natl Acad Sci USA 77: 385'388, 1980.

    Google Scholar 

  42. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR: Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26: 99–105, 1981.

    Google Scholar 

  43. Ross R, Bornstein P: The elastic fiber. Separation and partial characterization of its macromolecular components. J Cell Biol 40: 366–381, 1969.

    Google Scholar 

  44. Ross R: The elastic fiber. J Histochem Cytochem 21: 199–208, 1973.

    Google Scholar 

  45. Muir LW, Bornstein P, Ross R: A presumptive subunit of elastic fiber microfibrils secreted by arterial smoothmuscle cells in culture. Eur J Biochem 64: 105–114, 1976.

    Google Scholar 

  46. Sear CHJ, Kewley MA, Jones CJP, Grant ME, Jackson DS: the identification of glycoproteins associated with elastic-tissue microfibrils. Biochem J 170: 715–718, 1978.

    Google Scholar 

  47. Sear CHJ, Jones CJP, Knight KR, Grant ME: Elastogenesis and microfibrillar glycoprotein synthesis by bovine ligamentum nuchae cells in culture. Connect Tissue Res 8: 167–170, 1981.

    Google Scholar 

  48. Serafini-Fracassini A, Ventrella G, Field MJ, Hinnie J, Onyezili NI, Griffiths R: Characterization of a structural glycoprotein from bovine ligamentum nuchae exhibiting dual amine oxidase activity. Biochemistry 20: 5424–5429, 1981.

    Google Scholar 

  49. Serafini-Fracassini A, Ventrella G, Griffiths R, Hinnie J: Characterization of a self-associating glycoprotein from bovine ligamentum nuchae exhibiting dual amine oxidase activity. Connect Tissue Res 8: 227–229, 1981.

    Google Scholar 

  50. Cleary EG, Fanning JC, Prosser I: Possible role of microfibrils in elastogenesis. Connect Tissue Res 8: 161–166, 1981.

    Google Scholar 

  51. Toselli P, Salcedo LL, Oliver P, Franzblau C: Formation of elastic fibers and elastin in rabbit aortic smooth muscle cell cultures. Connect Tissue Res 8: 231–239, 1981.

    Google Scholar 

  52. Comper WD, Laurent TC: Physiological function of connective tissue polysaccharides. Physiol Rev 58: 255–303, 1978.

    Google Scholar 

  53. Hascall VC, Heinegard D: Aggregation of cartilage proteoglycans. 1. The role of hyaluronic acid. J Biol Chem 249: 4232–4241, 1974.

    Google Scholar 

  54. Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR: Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci USA 77: 4494–4498, 1980.

    Google Scholar 

  55. Parthasarathy N, Spiro RG: Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem 256: 507–513, 1981.

    Google Scholar 

  56. Hascall VC, Sajdera SW: Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chem 245: 4920–4930, 1970.

    Google Scholar 

  57. Hascall VC, Riolo RL: Characteristics of the proteinkeratan sulfate core and of keratan sulfate prepared from bovine nasal cartilage proteoglycan. J Biol Chem 247: 4529–4538, 1972.

    Google Scholar 

  58. Treadwell BV, Mankin DP, Ho PK, Mankin HJ: Cell free synthesis of cartilage proteins: partial identification of proteoglycan core and link proteins. Biochemistry 19: 2269–2275, 1980.

    Google Scholar 

  59. Baker JR, Caterson B, Christner J: The link proteins of cartilage proteoglycan aggregates: structure and function (Abstr). Symp ‘Structure and Biosynthesis of Cartilage Proteoglycans’, Diabetes and Research Training Center, University of Alabama in Birmingham, Jan 18–19, 1980.

  60. Hardingham TE: The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J 177: 237–247, 1979.

    Google Scholar 

  61. Hascall VC, Sajdera SW: Protein polysaccharide complex from bovine nasal cartilage. J Biol Chem 244: 2384–2396, 1969.

    Google Scholar 

  62. Roughley PJ: The degradation of cartilage proteoglycans by tissue proteinases. Biochem J 167: 639, 646, 1977.

    Google Scholar 

  63. Lapiere CM, Nusgens B: Collagen pathology at the molecular level. In GN Ramachandran, AH Reddi (eds) Biochemistry of collagen. Plenum, New York, pp 377–447, 1976.

    Google Scholar 

  64. Uitto J, Lichtenstein JR: Defects in the biochemistry of collagen in diseases of connective tissue. J Invest Derm 66: 59–79, 1976.

    Google Scholar 

  65. Stimler NP, Tanzer ML: Location of the intermolecular crosslinking sites in collagen. Adv Exp Med Biol 86B: 675–697, 1977.

    Google Scholar 

  66. Jimenez SA, Bashey RI, Benditt M, Yankowski R: Identification of collagen 312–1 (I) trimer in embryonic chick tendons and calvaria. Biochem Biophys Res Commun 78: 1354–1361, 1977.

    Google Scholar 

  67. Mayne R, Vail MS, Miller EJ: Analysis of changes in collagen biosynthesis that occur when chick condrocytes are grown in 5-bromo-2′-deoxyuridine. Proc Natl Acad Sci USA 72: 4511–4515, 1975.

    Google Scholar 

  68. Mayne R, Vail MS, Mayne PM, Miller EJ: Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci USA 73: 1674–1678, 1976.

    Google Scholar 

  69. Uitto J: collagen polymorphism: isolation and partial characterization of 312–2 (I) trimer molecules in normal human skin. Arch Biochem Biophys 192: 371–379, 1979.

    Google Scholar 

  70. Chung E, Miller EJ: Collagen polymorphism: characterization of molecules with the chain composition 312–3 in human tissues. Science 183: 1200–1201, 1974.

    Google Scholar 

  71. Miller EJ: Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem 13: 165–191, 1976.

    Google Scholar 

  72. Kefalides NA: Isolation of a collagen from basement membranes containing three identical α-chains. Biochem Biophys Res Commun 45: 226–235, 1971.

    Google Scholar 

  73. Sage H, Woodbury RG, Bornstein P: Structural studies on human type IV collagen. J Biol Chem 254: 9893–9900, 1979.

    Google Scholar 

  74. Crouch E, Sage H, Bornstein P: Structural basis for apparent heterogeneity of collagens in human basement membranes; type IV procollagen contains two distinct chains. Proc Natl Acad Sci USA 77: 745–749, 1980.

    Google Scholar 

  75. Yaoita H, Foidart JM, Katz SI: Localization of the collagenous component in skin basement membrane. J Invest Derm 70: 191–193, 1978.

    Google Scholar 

  76. Chung E, Rhodes RK, Miller EJ: Isolation of three collagenous components of probable basement membrane origin from several tissues. Biochem Biophys Res Commun 71: 1167–1174, 1976.

    Google Scholar 

  77. Burgeson RE, El Adli FA, Kaitila II, Hollister DW: Fetal membrane collagens: identification of two new collagen alpha chains. Proc Natl Acad Sci USA 73: 2579–2583, 1976.

    Google Scholar 

  78. Sage H, Bornstein P: Characterization of a novel collagen chain in human placenta and its relation to AB collagen. Biochemistry 18: 3815–3822, 1979.

    Google Scholar 

  79. Rhodes RK, Miller EJ: Physicochemical characterization and molecular organization of the collagen A and B chains. Biochemistry 17: 3442–3448, 1978.

    Google Scholar 

  80. Sage H, Crouch E, Bornstein P: Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry 18: 5433–5440, 1979.

    Google Scholar 

  81. Sage H, Pritzl P, Bornstein P: Secretory phenotypes of endothelial cells in culture: comparison of aortic, venous, capillary and corneal endothelium. Arteriosclerosis 1: 427–442, 1981.

    Google Scholar 

  82. Sage H, Pritzl P, Bornstein P: Unique, pepsin-sensitive collagen synthesized by aortic endothelial cells in culture. Biochemistry 19: 5747–5755, 1980.

    Google Scholar 

  83. Smith DW, Brown DM, Carnes HW: Preparation and properties of salt soluble elastin. J Biol Chem 247: 2427–2432, 1972.

    Google Scholar 

  84. Anwar RA, Gerber GE, Baig KM: Studies on cross-linked regions of elastin. Adv Exp Med Biol 86: 709–727, 1977.

    Google Scholar 

  85. Jones PA, Scott-Burden T, Gevers W: Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci USA 76: 353–357, 1979.

    Google Scholar 

  86. Mecham RP, Lange G, Madaras J, Starcher B: Elastin synthesis by ligamentum nuchae fibroblasts: effects of culture conditions and extracellular matrix on elastin production. J Cell Biol 90: 332–338, 1981.

    Google Scholar 

  87. Natali PG, Galloway D, Nicotra MR, De Martino C: Topographic association of fibronectin with elastic fibers in the arterial wall. An immunohistochemical study. Connect Tissue Res 8: 199–204, 1981.

    Google Scholar 

  88. Hedman K, Johansson S, Vartio T, Kjellen L, Vaheri A, Hook M: Structure of the pericellular matrix: association of heparan and chondroitin sulfates with fibronectin-procollagen fibers. Cell 28: 663–671, 1982.

    Google Scholar 

  89. Hayashi M, Schlesinger DH, Kennedy DW, Yamada KM: Isolation and characterization of a heparin-binding domain of cellular fibronectin. J Biol Chem 255: 10017–10020, 1980.

    Google Scholar 

  90. Laterra J, Ansbacher R, Culp LA: Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murien fibroblasts. Proc Natl Acad Sci USA 77: 6662–6666, 1980.

    Google Scholar 

  91. Perkins ME, Ji TH, Hynes RO: Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell 16: 941–952, 1979.

    Google Scholar 

  92. Lindahl U, Hook M: Glycosaminoglycans and their binding to biological macromolecules. Ann Rev Biochem 47: 385–417, 1978.

    Google Scholar 

  93. Toole BP: Binding and precipitation of soluble collagens by chick embryo cartilage proteoglycan. J Biol Chem 251: 896–897, 1976.

    Google Scholar 

  94. Ruoslahti E, Pekkala A, Engvall E: Effect of dextran sulfate on fibronectin-collagen interaction. FEBS Lett 107: 51–54, 1979.

    Google Scholar 

  95. Ruoslahti E, Engvall E: Complexing of fibronectin glycosaminoglycans and collagen. Biochim Biophys Acta 631: 350–358, 1980.

    Google Scholar 

  96. Johanson S, Hook M: Heparin enhances the rate of binding of fibronectin to collagen. Biochem J 187: 521–524, 1980.

    Google Scholar 

  97. Oldberg A, Ruoslahti E: Interaction between chondroitin sulfate proteoglycan, fibronectin and collagen. J Biol Chem 257: 4859–4863, 1982.

    Google Scholar 

  98. Sakashita S, Engvall E, Ruoslahti E: Basement membrane glycoprotein laminin binds to heparin. FEBS Lett 116: 243–246, 1980.

    Google Scholar 

  99. Radhakrishnamurthy B, Ruiz HAJr, Berenson GS: Isolation and characterization of proteoglycans from bovine aorta. J Biol Chem 252: 4831–4841, 1977.

    Google Scholar 

  100. Vaheri A, Vartio T, Stenman S, Saksela O, Medman K, Alitalo K: Fibronectin and proteinases in tumor invasion. In: P Strauli, AJ Barrett, A Baiei (eds) Proteinases and tumor invasion. Raven, New York, pp 49–57, 1980.

    Google Scholar 

  101. Liotta LA, Tryggvason K, Garbisa S, Robey PG, Abe S: Partial purification and characterization of a neutral protease which cleaves type IV collagen. Biochemistry 20: 100–104, 1981.

    Google Scholar 

  102. Liotta LA, Lanzer WL, Garbisa S: Identification of a type V collagenolytic enzyme. Biochem Biophys Res Commun 98: 184–190, 1981.

    Google Scholar 

  103. Vaheri A, Mosher DF: High molecular weight, cell surface-associated glycoprotein (fibronectin) lost in malignant transformation. Biochim Biophys Acta 516: 1–25, 1978.

    Google Scholar 

  104. Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S: Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 41: 4629–4636, 1981.

    Google Scholar 

  105. Vartio T, Seppa H, Vaheri A: Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase and cathepsin G. J Biol Chem 256: 471–477, 1981.

    Google Scholar 

  106. McDonald JA, Baum BJ, Rosenberg DM, Kelman JA, Brin SC, Crystal RG: Destruction of a major extracellular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphonuclear leukocyte granules. Lab Invest 40: 350–357, 1979.

    Google Scholar 

  107. McDonald JA, Kelley DG: Degradation of fibronectin by human leukocyte elastase. J Biol Chem 255: 8848–8858, 1980.

    Google Scholar 

  108. Morrison RIG, Barrett AJ, Dingle JT: Cathepsin B1 and D action on human cartilage proteoglycans. Biochim Biophys Acta 302: 411–419, 1973.

    Google Scholar 

  109. Starkey PM: Elastase and cathepsin G; the serine proteinases of human neutrophil leucocytes and spleen. In: AJ Barrett (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 57–89, 1977.

    Google Scholar 

  110. Keiser H, Greenwald RA, Feinstein G, Janoff A: Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases — a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J Clin Invest 57: 625–632, 1976.

    Google Scholar 

  111. Harris ED, Cartwright EC: Mammalian collagenases. In: AJ Barrett (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 249–283, 1977.

    Google Scholar 

  112. Liotta LA, Abe S, Robey PG, Martin GR: Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci USA 76: 2268–2272, 1979.

    Google Scholar 

  113. Burleigh MC: Degradation of collagen by non-specific proteinases. In: AJ Barrett (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 285–309, 1977.

    Google Scholar 

  114. Woolley DE, Glanville RW, Roberts DR, Evanson JM: Purification, characterization and inhibition of human skin collagenase. Biochem J 169: 265–276, 1978.

    Google Scholar 

  115. Mainardi CL, Dixit SN, Kang AH: Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J Biol Chem 255: 5435–5441, 1980.

    Google Scholar 

  116. Werb Z, Banda MJ, Jones PA: Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins, and collagen by proteinases isolated from macrophages. J Exp Med 152: 1340–1357, 1980.

    Google Scholar 

  117. Jilek F, Mormann H: Cold-insoluble globulin. II. Plasminolysis of cold-insoluble globulin. Hoppe Seylers Z Physiol Chem 358: 133–136, 1977.

    Google Scholar 

  118. Ruoslahti E, Hayman EG, Kuusela P, Shively JE, Engvall E: Isolation of a tryptic fragment containing the collagen-binding site of plasma fibronectin. J Biol Chem 254: 6054–6059, 1979.

    Google Scholar 

  119. Jones PA, Scott-Burden T: Activated macrophages digest the extracellular matrix proteins produced by cultured cells. Biochem Biophys Res Commun 86: 71–77, 1979.

    Google Scholar 

  120. Jones PA, Werb Z: Degradation of connective tissue matrices by macrophages II. Influence of matrix composition on proteolysis of glycoproteins, elastin and collagen by macrophages in culture. J Exp Med 152: 1527–1536, 1980.

    Google Scholar 

  121. Jones PA, DeClerck Y: Destruction of extracellular matrices containing glycoproteins, elastin and collagen by metastatic human tumor cells. Cancer Res 40: 3222–3227, 1980.

    Google Scholar 

  122. Kramer RM, Vogel KC, Nicolson GL: Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257: 2678–2686, 1982.

    Google Scholar 

  123. Roughley PJ, Barrett AJ: The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan structure and its susceptibility to proteolysis. Biochem J 167: 629–647, 1977.

    Google Scholar 

  124. Heinegard D, Hascall VC: Aggregation of cartilage proteoglycans III. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem 249: 4250–4256, 1974.

    Google Scholar 

  125. Sellers A, Reynolds JJ, Meikle MC: Neutral metalloproteinases of rabbit bone: separation in latent forms of distinct enzymes that when activated degrade collageń, gelatin and proteoglycans. Biochem J 171: 493–496, 1978.

    Google Scholar 

  126. Werb Z, Dingle JT, Reynolds JJ, Barrett AJ: Proteoglycan-degrading enzymes of rabbit fibroblasts and granulocytes. Biochem J 173: 949–958, 1978.

    Google Scholar 

  127. Emonds-Alt X, Quisquater E, Vaes G: Proteoglycan and fibrin-degrading neutral proteinase activiteis of Lewis lung carcinoma cells. Eur J Cancer 16: 1257–1261, 1980.

    Google Scholar 

  128. Gross J, Lapiere CM: Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48: 1014–1022, 1962.

    Google Scholar 

  129. Woolley DE, Evanston JM: Present status and future prospects in collagenase research. In: DE Wooley, JM Evanson (eds) Collagenase in normal and pathological connective tissues. J. Wiley, Chichester, pp 241–250, 1980.

    Google Scholar 

  130. Werb Z: Degradation of collagen-mechanisms. In: MIV Jayson, JB Weiss (eds) Collagen in health and disease. Churchill Livingstone, Edinburgh (in press).

  131. Birkedal-Hansen H, Cobb CM, Taylor RE, Fullmer HM: Activation of fibroblast procollagenase by mast cell proteases. Biochim Biophys Acta 438: 273–286, 1976.

    Google Scholar 

  132. Eeckhout Y, Vaes G: Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J 166: 21–31, 1977.

    Google Scholar 

  133. Murphy G, Cartwright EC, Sellers A, Reynolds JJ: The detection and characterization of collagenase inhibitors from rabbit tissues in culture. Biochim Biophys Acta 483: 493–498, 1977.

    Google Scholar 

  134. Davies M, Barrett AJ, Travis J, Sanders E, Coles GA: The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis. Clin Sci Mol Med 54: 233–240, 1978.

    Google Scholar 

  135. Partridge SM, Davis HF: The chemistry of connective tissues and composition of the soluble proteins derived from elastin. Biochem J 61: 21–30, 1955.

    Google Scholar 

  136. Janoff A, Scherer J: Mediators of inflammation in leukocyte lysosomes IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med 128: 1137–1156, 1968.

    Google Scholar 

  137. Janoff A: Purification of human granulocyte elastase by affinity chromatography. Lab Invest 29: 458–464, 1973.

    Google Scholar 

  138. Janoff A, Rosenberg R, Galdston M: Elastase-like esterprotease activity in human and rabbit alveolar macrophage granules. Proc Soc Exp Biol Med 136: 1054–1058, 1971.

    Google Scholar 

  139. Werb Z, Gordon S: Elastase secretion by stimulated macrophages, characterization and regulation. J Exp Med 142: 361–377, 1975.

    Google Scholar 

  140. Legrand Y, Caen JP, Booyse FM, Rafelson ME, Robert B, Robert L: Studies on a human blood platelet protease with elastolytic activity. Biochim Biophys Acta 309: 406–413, 1973.

    Google Scholar 

  141. Zimmerman M, Ashe BM: Substrate specificity of elastase and the chymotrypsin-like enzyme of the human granulocytes. Biochim Biophys Acta 480: 241–245, 1977.

    Google Scholar 

  142. Nakajima K, Powers J, Ashe BM, Zimmerman M: Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the 314–1 inhibitor reactive site. J Biol Chem 254: 4027–4032, 1979.

    Google Scholar 

  143. Getler A: The non-specific electrostatic nature of the interaction of elastase and other basic proteins on elastin. Eur J Biochem 20: 541–546, 1971.

    Google Scholar 

  144. Kaplan MH: Nature and role of the lytic factor in hemolytic streptococcal fibrinolysis. Proc Soc Exp Biol Med 57: 40–43, 1944.

    Google Scholar 

  145. Christensen LR: Streptococcal fibrinolysis: proteolytic reaction due to serum enzyme activated by streptococcal fibrinolysis. J Gen Physiol 28: 363–383, 1945.

    Google Scholar 

  146. Robbins KC, Bernabe P, Arzadon L, Summaria L: NH-terminal sequences of mammalian plasminogen and plasmin S-carboxymethyl heavy (A) and light (B) chain derivatives. A re-evaluation of the mechanism of activation of plasminogen. J Biol Chem 248: 7242–7246, 1973.

    Google Scholar 

  147. Summaria L, Hsieh B, Robbins KC: The specific mechanism of activation of human plasminogen to plasmin. J Biol Chem 242: 4279–4283, 1967.

    Google Scholar 

  148. Sodetz JM, Brockway WJ, Castellino JF: Multiplicity of rabbit plasminogen. Physical characterization. Biochemistry 11: 4451–4458, 1972.

    Google Scholar 

  149. Lazarowitz SG, Goldberg AR, Choppin PW: Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56: 172–180, 1973.

    Google Scholar 

  150. Blumberg PM, Robbins PW: Effect of proteases on activation of resting chick embryo fibroblasts and on cell surface proteins. Cell 6: 137–147, 1975.

    Google Scholar 

  151. Whur P, Koppel H, Urquahart C, Williams DC: Plasmn-mediated agglutination by concanavalin A of 3T3 cells cocultured with SV40–3T3 transformants. Nature 260: 709–710, 1976.

    Google Scholar 

  152. Werb Z, Mainardi CL, Vater CA, Harris ED: Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. New Eng J Med 296: 1017–1023, 1977.

    Google Scholar 

  153. Paranjpe M, Engel L, Young N, Liotta LA: Activation of human breast carcinoma collagenase through plasminogen activator. Life Sci 26: 1223–1231, 1980.

    Google Scholar 

  154. Connell GE, Porter RR: A new enzymic fragment (Facb) of rabbit immunoglobulin G. Biochem J 124: 53, 1971.

    Google Scholar 

  155. Goldberg AR: Increased protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell 2: 95–102, 1974.

    Google Scholar 

  156. Christman JK, Silverstein SC, Acs G: Plasminogen activators. In: AJ Barrett (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 91–149, 1977.

    Google Scholar 

  157. Quigley JP: Phorbol ester-induced morphological changes in transformed chick fibroblasts: evidence for direct catalytic involvement of plasminogen activator. Cell 17: 131–141, 1979.

    Google Scholar 

  158. Kirby DRS: The ‘invasiveness’ of the trophoblast. In: WW Park (ed) The early conceptus, normal and abnormal. University of St. Andrews Press, Edinburgh pp 68–73, 1965.

    Google Scholar 

  159. Beers WH, Strickland S, Reich E: Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell 6: 387–394, 1975.

    Google Scholar 

  160. Martinez-Hernandez A, Fink LM, Pierce GB: Removal of basement membrane in the involuting breast. Lab Invest 34: 455–462, 1976.

    Google Scholar 

  161. Babai F: Etude ultrastructurale sur la pathogenie de l'invasion du muscle strié par des tumeurs transplantables. J Ultrastructural Res 56: 287–303, 1976.

    Google Scholar 

  162. Babai F, Tremblay G: Ultrastructural study of liver invasion by Novikoff hepatoma. Cancer Res 32: 2765–2770, 1972.

    Google Scholar 

  163. Nakamura K, Kawaguchi J, Asahina S, Sakurai T, Ebina Y, Yokoya S, Morita M: Electron microscopic studies on extravasation of tumor cells and early foci of hematogenous metastases. GANN Mono Cancer Res 20: 57–72, 1977.

    Google Scholar 

  164. Hashimoto K, Yamanishi Y, Maeyens E, Dabbons MK, Kanzaki T: Collagenolytic activities of squamous cell carcinoma of the skin. Cancer Res 33: 2790–2801, 1973.

    Google Scholar 

  165. Ozello L: The behavior of basement membranes in intraductal carcinoma of the breast. Am J Pathol 35: 887–899, 1959.

    Google Scholar 

  166. Rubio CA, Biberfield P: The basement membrane of the uterine cervix in dysplasia and squamous carcinoma: an immunofluorescent study with antibodies to basement membrane antigen. Acta Pathol Microbiol Scand 83: 744–748, 1975.

    Google Scholar 

  167. Frei JV: Objective measurement of basement membrane abnormalities in human neoplasms of colorectum and of breast. Histopathology 2: 107–115, 1978.

    Google Scholar 

  168. Franks LM: Structure and biological malignancy of tumors. In: S Garattini, G Franchi (eds) Chemotherapy of cancer dissemination and metastasis. Raven, New York, pp 71–78, 1973.

    Google Scholar 

  169. Dresden MH, Heilman SA, Schmidt JD: Collagenolytic enzymes in human neoplasms. Cancer Res 32; 993–996, 1972.

    Google Scholar 

  170. Abramson M, Schilling RW, Huang CC, Salome RG: Collagenase activity in epidermoid carcinoma of the oral cavity and larynx. Ann Otol Rhinol Laryngol 84: 758–763, 1975.

    Google Scholar 

  171. Kuettner KE, Soble L, Croxen RL, Marczynska B, Hiti J, Harper E: Tumor cell collagenase and its inhibition by a cartilage-derived protease inhibitor. Science 196: 653–654, 1977.

    Google Scholar 

  172. Biswas C, Moran WP, Bloch KJ, Gross J: Collagenolytic activity of rabbit V2-carcinoma growing at multiple sites. Biochem Biophys Res Commun 80: 33–38, 1978.

    Google Scholar 

  173. Tane N, Hashimoto K, Kanzaki T, Ohyama M: Collagenolytic activities of cultured human malignant melanoma cells. J Biochem 84: 1171–1176, 1978.

    Google Scholar 

  174. Woolley DE, Tetlow LC, Mooney CJ, Evanson JM: Human collagenase and its extracellular inhibitors in relation to tumor invasiveness. In: P Strauli, AJ Barrett, A Baici (eds) Proteinases and tumor invasion. Raven, New York, pp 97–115, 1980.

    Google Scholar 

  175. Liotta LA, Kleinerman J, Catanzaro P, Rynbrandt D: Degradation of basement membrane by tumor cells. J Natl Cancer Inst 58: 1427–1431, 1977.

    Google Scholar 

  176. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–68, 1980.

    Google Scholar 

  177. Cliffton EE, Grossi CE: Fibrinolytic activity of human tumors as measured by the fibrin-plate method. Cancer 8: 1146–1154, 1955.

    Google Scholar 

  178. Unkeless JC, Tobia A, Ossowski L, Quigley JP, Rifkin DB, Reich E: An enzymatic function associated with transformation of fibroblasts by oncogenis viruses. J Exp Med 137: 85–111, 1973.

    Google Scholar 

  179. Christman JK, Acs G: Purification and characterization of a cellular fibrinolytic factor associated with oncogenic transformation: the plasminogen activator from SV-40 transformed hamster cells. Biochim Biophys Acta 340: 339–347, 1974.

    Google Scholar 

  180. Laug WE, Jones PA, Benedict WF: Relationship between fibrinolysis of cultured cells and malignancy. J Natl Cancer Inst 54: 173–179, 1975.

    Google Scholar 

  181. Wilson EL, Dowdle E: Secretion of plasminogen activator by normal reactive and neoplastic human tissue cultured in vitro. Int J Cancer 22: 390–399, 1978.

    Google Scholar 

  182. Wilson EL, Becker MLB, Hoal EG, Dowdle EB: Molecular species of plasminogen activators secreted by normal and neoplastic human cells. Cancer Res 40: 933–938, 1980.

    Google Scholar 

  183. Wang BS, McLoughlin GA, Rïchie JP, Mannick JA: Correlation of the production of plasminogen activator with tumor metastasis in B16 mouse melanoma cell lines. Cancer Res 40: 288–292, 1980.

    Google Scholar 

  184. Poole AR, Tiltman KJ, Recklies AD, Stoker TAM: Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 273: 545–547, 1978.

    Google Scholar 

  185. Recklies AD, Tiltman KJ, Stoker TAM, Poole AR: Secretion of proteinases from malignant and nonmalignant human breast tissue. Cancer Res 40: 550–556, 1980.

    Google Scholar 

  186. Sloane BF, Honn KV, Sadler JG, Turner WA, Kimpson JJ, Taylor JD: Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res 42: 980–986, 1982.

    Google Scholar 

  187. Gilfilan RF: Phagocytosis and degradation of elastin by normal and tumor cells in culture. Cancer Res 28: 137–147, 1968.

    Google Scholar 

  188. Kao RT, Wong M, Stern R: Elastin degradation by proteases from cultured human breast cancer cells. Biochem Biophys Res Commun 105: 383–389, 1982.

    Google Scholar 

  189. Hornebeck W, Brecheuner D, Bellon G, Adnet JJ, Robert L: Biological significance of elastase-like enzymes in arteriosclerosis and human breast cancer. In: P Strauli, AJ Barrett, A Baici (eds) Proteinases and tumor invasion. Raven, New York, pp 117–141, 1980.

    Google Scholar 

  190. Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL: Heparan sulfate degradation correlates with tumor invasive and metastatic properties of B16 melanoma sublines. Science (submitted), 1982.

  191. Unkeless JC, Gordon S, Reich E: Secretion of plasminogen activator by stimulated macrophages. J Exp Med 139: 834–850, 1974.

    Google Scholar 

  192. Nicolson G, Winkelhake JL, Nussey AC: An approach to studying the cellular properties associated with metastasis: some in vitro properties of tumor variants selected in vivo for enhanced metastasis. In: L Weiss (ed) Fundamental aspects of metastasis. Elsevier, Amsterdam, pp 291–303, 1976.

    Google Scholar 

  193. Chibber BA, Niles RM, Prehn L, Sorof S: High extracellular fibrinolytic activity of tumors and control normal tissues. Biochem Biophys Res Commun 65: 806–812, 1975.

    Google Scholar 

  194. Vetterlein D, Young PL, Bell TE, Roblin R: Immunological characterization of multiple molecular weight forms of human cell plasminogen activators. J Biol Chem 254: 575–578, 1979.

    Google Scholar 

  195. Kuettner KE, Croxen RL, Eisenstein R, Sorgente N: Proteinase inhibitor activity in connective tissues. Experientia 30: 595–597, 1974.

    Google Scholar 

  196. Starkey PM, Barrett AJ: 316–1, a physiological regulator of proteinase activity. In: AJ Barrett (ed) Proteinases in mammalian cells and tissues. Elsevier, Amsterdam, pp 663–696, 1977.

    Google Scholar 

  197. Morse JO: Alpha1-antitrypsin deficiency. N Eng J Med 299: 1045–1048, 1099–1105, 1978.

    Google Scholar 

  198. Baugh RJ, Schnebli HP: Role and potential therapeutic value of proteinase inhibitors in tissue destruction. In: P Strauli, AJ Barrett, A Baici (eds) Proteinases and tumor invasion. Raven, New York, pp 157–180, 1980.

    Google Scholar 

  199. Wigler M, Ford JP, Weinstein IB: Glucocorticoid inhibition of the fibrinolytic activity of tumor cells. In: E Reich, DB Rifkin, E Shaw (eds) Proteases and biological control. Cold Spring Harbor Laboratory, pp 849–856, 1975.

  200. Mak TW, Rutledge G, Sutherland DJA: Androgen-dependent fibrinolytic activity in a murine mammary carcinoma (Shigonogi SC-115 cells) in vitro. Cell 7: 223–226, 1976.

    Google Scholar 

  201. Rohrlich ST, Rifkin DB: Patterns of plasminogen activator production in cultured normal embryonic cells. J Cell Biol 75: 31–42, 1977.

    Google Scholar 

  202. Bosmann HB: Release of specific protease during mitotic cycle of L5178Y Murine leukaemic cells by sublethal autolysis. Nature 249: 144–145, 1974.

    Google Scholar 

  203. Jones PA, Laug WE, Benedict WF: Clonal variation of fibrinolytic activity in a human fibrosarcoma cell line and evidence for the induction of plasminogen activator secretion during tumor formation. Cell 6: 245–252, 1975.

    Google Scholar 

  204. Moscatelli D, Rifkin DB, Isseroff RR, Jaffe EA: Plasminogen activator, plasmin and collagenase interactions. In: P Strauli, AJ Barrett, A Baici (eds) Proteinases and tumor invasion. Raven, New York, pp 143–152, 1980.

    Google Scholar 

  205. Bauer EA, Uitto J, Walters RC, Eisen AZ: Enhanced collagenase production by fibroblasts derived from human basal cell carcinomas. Cancer Res 39: 4594–4599, 1979.

    Google Scholar 

  206. Werb Z, Aggeler J: Proteases induce secretion of collagenase and plasminogen activator by fibroblasts. Proc Natl Acad Sci USA 75: 1839–1843, 1978.

    Google Scholar 

  207. Newsome DA, Gross J: Regulation of corneal collagenase production: stimulation of serially passaged stromal cells by blood mononuclear cells. Cell 16: 895–900, 1979.

    Google Scholar 

  208. Kirschner RJ, Federick CS, Ford JP, Shafer JA: Detection and partial characterization of a protein in mouse fibroblasts that binds and inhibits trypsin. J Biol Chem 255: 5468–5474, 1980.

    Google Scholar 

  209. Welgus HG, Stricklin GP, Eisen AZ, Baurer EA, Cooney RV, Jeffrey JJ: A specific inhibitor of vertebrate collagenase produced by human skin fibroblasts. J Biol Chem 254: 1938–1943, 1979.

    Google Scholar 

  210. Wolan JC, Ridge S, Oronsky AL, Slakey LL, Kerwar SS: Synthesis of a collagenase inhibitor by smooth muscle cells in culture. Biochem Biophys Res Commun 83: 1183–1190, 1978.

    Google Scholar 

  211. Heisel MA, Jones PA, Laug WE: Modulation of the degradative properties of human fibrosarcoma cells by endothelial cells. Proc Am Assoc Cancer Res 22: 2484, 1981 (Abstr).

    Google Scholar 

  212. Werb Z, Gordon S: Secretion of a specific collagenase by stimulated macrophages. J Exp Med 142: 346–360, 1975.

    Google Scholar 

  213. Huybrechts-Godin G, Hauser P, Vaes G: Macrophage-fibroblast interactions in collagenase production and cartilage degradation. Biochem J 184: 643–650, 1979.

    Google Scholar 

  214. Wood S: Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. Arch Pathol 66: 550–568, 1958.

    Google Scholar 

  215. Sherwin RP, Richters A: Pathobiologic nature of lymphocyte interactions with human breast cancer. J Natl Cancer Inst 48: 1111–1115, 1972.

    Google Scholar 

  216. Kleinman HK, McGoodwin EB, Martin GR, Klebe RJ, Fietzek PP, Woolley DE: Localization of the binding site for cell attachment in the α1 (I) chain of collagen. J Biol Chem 253: 5642–5646, 1978.

    Google Scholar 

  217. David G, Bernfield MR: Collagen reduces glycosaminoglycan degradation by cultured mammary epithelial cells: possible mechanism of basal lamina formation. Proc Natl Acad Sci USA 76: 786–790, 1979.

    Google Scholar 

  218. Vater CA, Harris ED, Siegel RC: Native crosslinks in collagen fibrils induce resistance to human synovial collagenase. Biochem J 181: 639–645, 1979.

    Google Scholar 

  219. Barrett JA, Sheela S, Brody A: Degradation of basement membrane mediated by cellular plasminogen activator. Am Assoc Cancer Res 21: 59, 1980 (abstr).

    Google Scholar 

  220. Werb Z, Bainton DF, Jones PA: Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med 152: 1537–1553, 1980.

    Google Scholar 

  221. DeClerck YA, Jones PA: The effect of ascorbic acid on the resistance of the extracellular matrix to hydrolysis by tumor cells. Cancer Res 40: 3228–3231, 1980.

    Google Scholar 

  222. DeClerck YA, Jones PA: The effect of ascorbic acid on the nature and production of collagen and elastin by rat smooth muscle cells. Biochem J 186: 217–225, 1980.

    Google Scholar 

  223. Jones PA, Laug WE: Destruction by human tumor cells of basement membranes produced by cultured endothelial cells. Am Assoc Cancer Res 21: 210, 1980 (abstr).

    Google Scholar 

  224. Poste G, Fidler IJ: The pathogenesis of cancer metastasis. Nature 283: 139–146, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P.A., De Clerck, Y.A. Extracellular matrix destruction by invasive tumor cells. Cancer Metast Rev 1, 289–317 (1982). https://doi.org/10.1007/BF00124214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124214

Keywords

Navigation