Skip to main content
Log in

Finding potential DNA-binding compounds by using molecular shape

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

For the first time a general shape-search docking algorithm (DOCK) has been applied to the minor and major grooves of A-, B- and Z-type DNA dodecamers and to an intercalation site in a B-DNA-type hexamer. Both experimentally and theoretically derived geometries for the various DNA fragments were used. The DOCK searches were carried out on a subset of the Cambridge Crystallographic Database, consisting of almost 10 000 molecules. One of the molecules that scored best in terms of the DOCK algorithm was CC-1065, a potent antitumor agent known to (covalently) bind the AT-rich parts of the minor groove of B-DNA. Several known DNA-binding agents also scored highly. Molecules with shapes complementary to A-, B- and Z-type DNA were indicated by DOCK. In addition, compounds were extracted from the database that might be selective for the GC-rich regions of the minor groove of B-DNA. Many of the compounds in the present study may serve as a starting point for further molecular design of novel DNA-binding ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HurleyL.H., J. Med. Chem., 32 (1989) 3027.

    Google Scholar 

  2. DervanP.B., Science, 232 (1986) 464.

    Google Scholar 

  3. ZímmerC. and WähnertU., Prog. Biophys. Mol. Biol., 47 (1986) 31.

    Google Scholar 

  4. NeidleS. and AbrahamZ., Crit. Rev. Biochem., 17 (1984) 73.

    Google Scholar 

  5. PullmanB., In SarmaR.H. and SarmaM.H. (Eds.) Structure and Expression, Vol. 2: DNA and Its Drug Complexes, Adenine Press, Albany, NY, 1988, pp. 237–249.

    Google Scholar 

  6. PullmanB., Adv. Drug. Res., 18 (1989) 1.

    Google Scholar 

  7. CieplakP., RaoS.N., GrootenhuisP.D.J. and KollmanP.A., Biopolymers, 29 (1990) 717.

    Google Scholar 

  8. FrederickC.A., WilliamsL.D., UghettoG., Van derMarelG.A., VanBoomJ.H. RichA. and WangA.H.J., Biochemistry, 29 (1990) 2538.

    Google Scholar 

  9. LiawY.C., GaoY.G., RobinsonH., Van derMarelG.A., VanBoomJ.H. and WangA.H.J., Biochemistry, 28 (1989) 9913.

    Google Scholar 

  10. PyleA.M., RehmannJ.P., MeshoyrerR., KumarC.V., TurroN.J. and BartonJ.K., J. Am. Chem. Soc., 111 (1989) 3051.

    Google Scholar 

  11. KuntzI.D., BlaneyJ.M., OatleyS.J., LangridgeR. and FerrinT.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  12. DesJarlaisR.L., SheridanR.P., SeibelG.L., DixonJ.S., KuntzI.D. and VenkataraghavanR., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  13. DesJarlaisR.L., SeibelG.L., KuntzI.D., Ortiz de MontellanoP., FurthP.S., AlvarezJ.C., DeCampD.L., BabéL.M. and CraikC.S., Proc. Natl. Acad. Sci. USA, 87 (1990) 6644.

    Google Scholar 

  14. Part of this work appeared in preliminary form in: GrootenhuisP.D.J., KollmanP.A., SeibelG.L., DesJarlaisR.L. and KuntzI.D., Anti-Cancer Drug Design, 5 (1990) 237.

    Google Scholar 

  15. ShoichetB.K., BodianD.L. and KuntzI.D., J. Comput. Chem., 13 (1992) 380.

    Google Scholar 

  16. MengE.C., ShoichetB.K. and KuntzI.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  17. KopkaM.L., YoonC., GoodsellD., PjuraP. and DickersonR.E., Proc. Natl. Acad. Sci. USA, 82 (1985) 1376.

    Google Scholar 

  18. BreslauerK.J., FerranteR., MarkyL.A., DervanP.B. and YoungquistR.S., In SarmaR.H. and SarmaM.H. (Eds.) Structure and Expression, Vol. 2: DNA and Its Drug Complexes, Adenine Press, Albany, NY, 1988, pp. 273–290.

    Google Scholar 

  19. ArnottS., HukinsD.W.L., DoverS.D., FullerW. and HodgesonA.R., J. Mol. Biol., 31 (1973) 7204.

    Google Scholar 

  20. QuigleyG.J., WangA.H.J., UghettoG., Van derMarelG., VanBoomJ.H. and RichA., Proc. Natl. Acad. Sci. USA, 77 (1980) 7204.

    Google Scholar 

  21. Seibel, G.L., manuscript in preparation.

  22. ConnollyM.L., Science, 231 (1983) 709.

    Google Scholar 

  23. FerrinT.E., HuangC.C., JarvisL.E. and LangridgeR., J. Mol. Graphics 6 (1988) 13.

    Google Scholar 

  24. DesJarlais, R.L., Ph.D. Thesis, University of California at San Francisco, San Francisco, CA, 1988.

    Google Scholar 

  25. WeinerP.K. and KollmanP.A., J. Comput. Chem., 2 (1981) 287.

    Google Scholar 

  26. WeinerS.J., KollmanP.A., NguyenD.T. and CaseD.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  27. WeinerS.J., KollmanP.A., CaseD.A., SinghU.C., GhioC., AlagonaG., ProfetaJr.S. and WeinerP., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  28. SinghU.C., WeinerP.K., CaldwellJ. and KollmanP.A., AMBER 3.0, University of California at San Francisco, San Francisco, CA, 1987.

    Google Scholar 

  29. GaoX., MirauP. and PatelD.J., J. Mol. Biol., 223 (1992) 259.

    Google Scholar 

  30. ChidesterC.G., KruegerW.C., MizsakS.A., DuchampD.J. and MartinD.G., J. Am. Chem. Soc., 103 (1981) 7629.

    Google Scholar 

  31. HurleyL.H., ReynoldsV.L., SwensonD.H., PetzoldG.L. and SeahillT.A., Science. 226 (1984) 843.

    Google Scholar 

  32. Needham-VanDevanterD.R., HurleyL.H., ReynoidsV.L., TheriauitN.T., KruegerW.C. and WierengaW., Nucleic Acids Res., 12 (1984) 6159.

    Google Scholar 

  33. HurleyL.H., LeeC.S., McGovrenJ.P., WarpehoskiM.A., MitchellM.A., KellyR.C. and AristoffP.A., Biochemistry, 27 (1988) 3886.

    Google Scholar 

  34. LeeM., SheaR.G., HartleyJ.A., KissingerK., PonR.T., VesnaverG., BreslauerK.J., DabrowiakJ.C. and LownJ.W., J. Am. Chem. Soc., 111 (1989) 345.

    Google Scholar 

  35. ScahillT.A., JensenR.M., SwensonD.H., HatzenbuhlerN.T., PetzoldG., WierengaW. and BrahmeN.D., Biochemistry, 29 (1990) 2852.

    Google Scholar 

  36. SaengerW., Principles of Nuclelc Acid Structure, Springer, New York, NY, 1984.

    Google Scholar 

  37. BartonJ.K., Chem. Eng. News 66 (1988) 345.

    Google Scholar 

  38. SträhleU., BoshartM., KloekG., StewartF. and SchützG., Nature, 339 (1989) 629.

    Google Scholar 

  39. AryaS.K. and YangJ.T., Biochemistry, 14 (1975) 963.

    Google Scholar 

  40. ChandrasekharB., Mrigank and KothekarV., FEBS Lett., 225 (1987) 151.

    Google Scholar 

  41. BlackburnG.M., KellardB., RahidA. and ThompsonM.H., Biochem. Pharmacol., 32 (1983) 2571.

    Google Scholar 

  42. HendryL.B., J. Steroid Biochem. Mol. Biol., 31 (1988) 493.

    Google Scholar 

  43. SpelsbergT.C., RuhT., RuhM., GoldbergerA., HortonM., HoraJ. and SinghR., J. Steroid Biochem. Mol. Biol., 31 (1988) 579.

    Google Scholar 

  44. HuiX., GreshN. and PulimanB., Nucleic Acids Res., 17 (1989) 4177.

    Google Scholar 

  45. FCD-3D, version 89.2 is avallable from Molecular Design Ltd, San Leandro, CA.

  46. PearlmanR.S., CDA News, 2 (1987) 1.

    Google Scholar 

  47. PearlmanR.S., RusinkoA., SkellJ.M. and BalducciR., CONCORD, Tripos Associates Inc., St. Louis, MO, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grootenhuis, P.D.J., Roe, D.C., Kollman, P.A. et al. Finding potential DNA-binding compounds by using molecular shape. J Computer-Aided Mol Des 8, 731–750 (1994). https://doi.org/10.1007/BF00124018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124018

Key words

Navigation