Skip to main content
Log in

Structural changes by sulfoxidation of phenothiazine drugs

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The side-chain conformations of psychoactive phenothiazine drugs in crystals are different from those of biologically inactive ring sulfoxide metabolites. This study examines the potential energies, molecular conformations and electrostatic potentials in chlorpromazine, levomepromazine (methotrimeprazine), their sulfoxide metabolites and methoxypromazine. The purpose of the study was to examine the significance of the different crystal conformations of active and inactive phenothiazine derivatives, and to determine why phenothiazine drugs lose most of their biological activity by sulfoxidation. Quantum mechanics and molecular mechanics calculations demonstrated that conformations with the side chain folded over the ring structure had lowest potential energy in vacuo, both in the drugs and in the sulfoxide metabolites. In the sulfoxides, side chain conformations corresponding to the crystal structure of chlorpromazine sulfoxide were characterized by stronger negative electrostatic potentials around the ring system than in the parent drugs. This may weaken the electrostatic interaction of sulfoxide metabolites with negatively charged domains in dopamine receptors, and cause the sulfoxides to be virtually inactive in dopamine receptor binding and related pharmacological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jørgensen, A., In Bridges, J.W. and Chasseaud, L.F. (Eds.), Progress in Drug Metabolism, Vol. 9, Taylor and Francis, London, 1986, pp. 111–174.

    Google Scholar 

  2. Dahl, S.G., Therap. Drug Monit., 4 (1982) 33.

    Google Scholar 

  3. Axelsson, R. and Mårtensson, E., Curr. Therap. Res., 21 (1977) 561.

    Google Scholar 

  4. Aravagiri, M., Hawes, E.M. and Midha, K.K., J. Pharm. Sci., 73 (1984) 1383.

    Google Scholar 

  5. Marder, S.M., Hubbard, J.W., VanPutten, T. and Midha, K.K., Psychopharmacology, 98 (1989) 433.

    Google Scholar 

  6. Dahl, S.G., Strandjord, R.E. and Sigfusson, S., Europ. J. Clin. Pharmacol., 11 (1977) 305.

    Google Scholar 

  7. Gottschalk, L.A., Dinovo, E., Biener, R. and Nandi, B.R., J. Pharm. Sci., 67 (1978) 155.

    Google Scholar 

  8. Axelsson, R. and Mårtensson, E., Curr. Therap. Res., 28 (1980) 463.

    Google Scholar 

  9. Dahl, S.G. and Strandjord, R.E., Clin. Pharmacol. Therap., 21 (1977) 437.

    Google Scholar 

  10. Dahl, S.G. (Review), In Usdin, E., Dahl, S.G., Gram, L.F. and Lingjærde, O. (Eds.), Clinical Pharmacology in Psychiatry. Neuroleptic and Antidepressant Research, Macmillan, London, 1981, pp. 125–137.

    Google Scholar 

  11. Creese, I., Manian, A.A., Prosser, T.D. and Snyder, S.H., Eur. J. Pharmacol. 47 (1978) 291.

    Google Scholar 

  12. Dahl, S.G. and Hall, H., Psychoparmacology 74 (1981) 101.

    Google Scholar 

  13. Morel, E., Lloyd, K.G. and Dahl, S.G., Psychopharmacology, 92 (1987) 68.

    Google Scholar 

  14. Dahl, S.G. and Refsum, H., Eur. J. Pharmacol., 37 (1976) 241.

    Google Scholar 

  15. Dahl, S.G., Hjorth, M. and Hough, E., Mol. Pharmacol., 20 (1982) 409.

    Google Scholar 

  16. Hough, E., Hjorth, M. and Dahl, S.G., Acta Crystallogr., B38 (1982) 2424.

    Google Scholar 

  17. Hough, E., Hjorth, M. and Dahl, S.G., Acta Crystallogr., C41 (1985) 383.

    Google Scholar 

  18. Hough, E., Wold, E. and Dahl, S.G., Acta Crystallogr., C41 (1985) 386.

    Google Scholar 

  19. Dahl, S.G., Hough, E. and Hals, P.-A., Biochem. Pharmacol. 35 (1986) 1263.

    Google Scholar 

  20. Marsau, P. and Gauthier, J., Acta Crystallogr. C29 (1973) 992.

    Google Scholar 

  21. Viterbo, D., Hansen, L.K., Hough, E. and Dahl, S.G., Acta Crystallogr., C42 (1986) 889.

    Google Scholar 

  22. McDowell, J.J.H., Acta Crystallogr., B25 (1969) 2175.

    Google Scholar 

  23. Singh, U.C., Weiner, P.K., Caldwell, J.W. and Kollman, P.A., Assisted model building with energy refinement. AMBER UCSF Version 3.0, Dept. Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, 1986.

    Google Scholar 

  24. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem. 7 (1986) 230.

    Google Scholar 

  25. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  26. Singh, U.C. and Kollman, P.A., J. Comp. Chem., 5 (1984) 129.

    Google Scholar 

  27. Binkley, J.S., Whiteside, R.A., Krishnan, R., Seeger, R., Defrees, D.J., Schlegel, H.B., Topiol, S., Kahn, L.R. and Pople, J.A., GAUSSIAN 80, Quantum Chemistry Program Exchange, 1980.

  28. Blackmore, W.R. and Abrahams, S.C., Acta Crystallogr., 8 (1955) 329.

    Google Scholar 

  29. Pierce, L. and Hayashi, M., J. Chem. Phys., 35 (1961) 479.

    Google Scholar 

  30. Abrahams, S.C., Acta Crystallogr., 10 (1957) 417.

    Google Scholar 

  31. Feder, W., Dreizler, H., Rudolph, D.H. and Typke, V., Z. Naturforsch., 24a (1969) 266.

    Google Scholar 

  32. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 2.

    Google Scholar 

  33. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.

    Google Scholar 

  34. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  35. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  36. Strange, P.G., T.I.N.S. 13 (1990) 373.

    Google Scholar 

  37. Dahl, S.G., Edvardsen, Ø. and Sylte, I., Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 8111.

    Google Scholar 

  38. Neve, K.A., Tester, B.A., Henningsen, R.A., Spanoyannis, A. and Neve, R.L., Mol. Pharmacol. 39 (1991) 733.

    Google Scholar 

  39. Zichi, D.A. and Rossky, P.J., J. Chem. Phys., 84 (1986) 1712.

    Google Scholar 

  40. Miller, R.J., Horn, A.S. and Iversen, L.L., Mol. Pharmacol., 10 (1974) 759–766.

    Google Scholar 

  41. Sylte, I. and Dahl, S.G., J. Pharm. Sci., 80 (1991) 735.

    Google Scholar 

  42. Sylte, I. and Dahl, S.G., Pharm. Res., 8 (1991) 462.

    Google Scholar 

  43. Burgen, A.S.V., Roberts, G.C.K. and Feeney, J., Nature 253, (1975) 753.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, S.G., Kollman, P.A., Rao, S.N. et al. Structural changes by sulfoxidation of phenothiazine drugs. J Computer-Aided Mol Des 6, 207–222 (1992). https://doi.org/10.1007/BF00123377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123377

Key words

Navigation