Skip to main content
Log in

Knowledge visualization: A new framework for interactive graphic interface design

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Diagrams communicate massive amounts of information at a glance. Complex domains can be simplified and extended with diagrammatic notations. Computational systems can certainly benefit from the use of diagrams. However, graphic interfaces are difficult and time consuming to write. We need a way of shortening the graphic-interface building cycle so that it is relatively easy and fast to add a graphic interface to any application that may benefit from it.

A general-purpose, graphic-interface-building tool kit that a designer or user, not a programmer, can use to design and attach graphic interfaces to applications can greatly speed up and lower the costs of adding graphics to systems. In this paper, I describe a new framework for interactive graphic interface design. The framework will enable graphic-interface-building tools which are general purpose, inter-active, and application-specific.

The framework consists of a taxonomy (ontology) of visual properties that span sub-object properties, full objects, and the relationships between objects. The taxonomy forms a skeleton on which to hang methods for manipulating these visual properties, objects, relations, and composites. The methods consist of the generation of prototypes, the recognition of properties in objects, and mouse manipulation functions for modifying properties in an object. Further characteristics of the framework are that the properties are composable, that objects can be explicitly, incrementally described through repeated composition and application of recognition methods, and that the composition of properties to form more fully described and more complex objects is recursive. This makes the framework and the objects within it quite flexible, incremental, uniform, and modular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. R.P. Feynman,Quantum Electrodynamics, Addison-Wesley: Reading MA, 1961.

    Google Scholar 

  2. J.S. Brown, “Research that reinvents the corporation,”Harvard Business Review, pp. 102–111, 1991.

  3. F. Zdybel, N.R. Greenfield, M.D. Yonke, and J. Gibbons, “An information presentation system,” in Proc. of the 7th IJCAI. Vancouver BC, Canada, 1981, pp. 978–984.

  4. M. Friedell, J. Barnett, and D. Kramlich, “Context-sensitive, graphic presentation of information,”Computer Graphics vol. 16, pp. 181–188, 1982.

    Google Scholar 

  5. E.C. Ciccarelli, “Presentation based user interfaces,” PhD thesis, Massachusetts Institute of Technology, A.I. Lab., 1984.

  6. J.D. Holland, E.L. Hutchins, and L. Weitzman, “STEAMER: An interactive inspectable simulation-based training system,”Al Magazine vol. 5, pp. 15–27, 1984.

    Google Scholar 

  7. P.S. Barth, “An object-oriented approach to graphical interfaces,”ACM Transactions on Graphics vol. 5, pp. 142–172, 1986.

    Google Scholar 

  8. B.A. Myers,Creating User Interfaces by Demonstration. Academic Press: Boston MA, 1988.

    Google Scholar 

  9. G. Singh, C.H. Kok, and T.Y. Ngan, “Druid: A system for demonstrational rapid user interface development,” in Proc. of Symposium on User Interface Software and Technology, Snowbird UT, 1990, pp. 167–177.

  10. P.R. Calder, and M.A. Linton, “Glyphs: Flyweight objects for user interfaces,” in Proc. of Symposium on User Interface Software and Technology, Snowbird UT, 1990, pp. 92–101.

  11. F. Lakin, “Visual grammars for visual languages,” in Proc. of the Nat. Conf. on AI, Seattle WA, 1987, pp. 683–688.

  12. F. Lakin, “Spatial parsing for visual languages,” in Visual Languages, by S.K. Chang, T. Ichikawa, and P.A. Ligomenides (editors), Plenum Press: New York NY, pp. 35–85, 1987.

    Google Scholar 

  13. R.E. Filman, J. Lamping, and F.S. Montalvo, “Meta-language and meta-reasoning,” in Proc. of the 8th IJCAI, Karlsruhe, West Germany, 1983, pp. 365–369.

  14. D.M. Levy, D.C. Brotsky, and K.R. Olson, “Formalizing the figural: Aspects of a foundation for document manipulation,” in Proc. of ACM Conference on Document Processing Systems, Santa Fe NM, 1988, pp. 145–151.

  15. N. Bongard,Pattern Recognition, Macmillan & Co. Ltd.: London, Great Britain, 1970.

    Google Scholar 

  16. F.S. Montalvo, “Knowledge visualizer: A graphic interface-building tool kit,” MIT Media Lab., Massachusetts Institute of Technology, Cambridge MA, Technical Report, 1988.

    Google Scholar 

  17. R.G. Bushko, “KRA-Knowledge-Rich Analogy: Adaptive estimation with common sense,” Master's thesis, Massachusetts Institute of Technology, EECS Dept., 1990.

  18. D.B. Lenat, and R.V. Guha,Building Large Knowledge-Based Systems, Addison-Wesley: Reading MA, 1990.

    Google Scholar 

  19. R. Greenlee, “Representing Visual Knowledge,” Unpublished manuscript for class project for an MIT EECS Dept. course entitled “Knowledge-Based Application Systems,” Course No. 6.871, 1987.

  20. F.S. Montalvo, “Diagram understanding: The symbolic descriptions behind the scenes,” in Visual Languages and Applications, by T. Ichikawa, E. Jungert, and R.R. Korfhage (editors), Plenum Press: New York NY, pp. 5–27, 1990.

    Google Scholar 

  21. AAAI-91, Panel on “Knowledge representation: Broadening the perspective,” Anaheim CA, July, 1991. Recorded on tape. Also an article by R. Davis and H. Shrobe, to be submitted to AI Magazine.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montalvo, F.S. Knowledge visualization: A new framework for interactive graphic interface design. Appl Intell 1, 297–309 (1992). https://doi.org/10.1007/BF00122019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122019

Key words

Navigation