Skip to main content
Log in

Genome size and A-T rich DNA in selachians

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The nuclear DNA content of 23 selachian species (10 Batoidea, 11 Galeomorphii, and 2 Squalomorphii) was histophotometrically studied. Their genome sizes range from 7.5 pg/N in Raja fillae (Batoidea) to 34.1 pg/N in Oxynotus centrina (Squalomorphii).

Results show slight differences in the pattern of quantitative variations between the superorders Batoidea and Galeomorphii; Squalomorphii preserve their peculiar wide interspecific variability at the intrafamilial level, with values sited between 13.1 and 34.1 pg/N.

In 21 species also the DNA base composition was determined by means of DAPI. The study shows that in the species examined the DAPI positive fraction varies from a minimum of 27.7% in Oxynotus centrina, which possesses the largest genome size among all the Selachians studied, to a maximum of 72.5% in Carcharhinus limbatus. As a whole the data show an inverse correlation between the DNA content and the DAPI positive fraction, a condition common to all cold-blooded vertebrates.

The low percentage of DAPI positive DNA found in Oxynotus centrina could be attributable to a lower stainability by the fluorochrome caused by a higher chromatin condensation in the erythrocytes.

The validity of the DAPI method was verified by comparison with the biochemical assay according to the thermal denaturation method in 6 selachian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Capriglione, T., Olmo, E., Odierna, G., Improta, B. & Morescalchi, A., 1987. Cytofluorometric DNA base determination in vertebrate species with different genome sizes. Bas. appl. Histochem. 31: 119–126.

    Google Scholar 

  • Coleman, A. W. & Goff, L. J., 1985. Applications of fluorochromes to pollen biology. I. Mythramycin and 4′,6′-diamidino-2-phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA. Stain Technol. 60: 145–154.

    Google Scholar 

  • Hinegardner, R. T., 1976. The cellular DNA content of sharks, rays and some other fishes. Comp. Biochem. Physiol. 55B: 367–370.

    Google Scholar 

  • Leeman, U. & Ruch, F., 1982. Cytofluorometric determination of DNA base content in plant nuclei and chromosomes by the fluorochromes DAPI and chromomycin A3. Expl Cell Res. 140: 275–282.

    Google Scholar 

  • Maisey, J. G., 1984a. Chondrichthyan phylogeny: a look at the evidence. J. Vert. Pal. 4: 359–371.

    Google Scholar 

  • Maisey, J. G., 1984b. Higher elasmobranch phylogeny and biostratigraphy. Zool. J. Linn. Soc. 82: 33–54.

    Google Scholar 

  • Mandel, M. & Marmur, J., 1968. Use of ultraviolet absorbance-temperature profile for determining the Guanine plus Cytosine content of DNA. Methods Enzymol. 12B, 195–206.

    Google Scholar 

  • Marmur, J., 1963. A procedure for the isolation of deoxyribonucleic acid from microorganisms. Methods Enzymol. 6: 726–738.

    Google Scholar 

  • Mendelsohn, M. L., 1966. Adsorption cytophotometry: comparative methodology for objects and the two-wavelength method. In: Introduction to quantitative cytochemistry: 201–214, G. L.Wied, ed., Academic Press, New York and London.

    Google Scholar 

  • Nagl, W., 1985. Chromatin organization and the control of gene activity. Int. Rev. Cytol. 94: 21–56.

    Google Scholar 

  • Olmo, E., 1983. Nucleotype and cell size in vertebrates: a review. Bas. appl. Histochem. 27: 227–256.

    Google Scholar 

  • Olmo, E., Stingo, V., Odierna, G. & Capriglione, T., 1980. Cryptic polyploidy in sharks and rays as revealed by DNA renaturation Kinetics. Atti Accad. Naz. Line. 48: 555–560.

    Google Scholar 

  • Olmo, E., Stingo, V., Cobror, O., Capriglione, T. & Odierna, G., 1982. Repetitive DNA and polyplody in selachians. Comp. Biochem. Physiol. 73b: 739–745.

    Google Scholar 

  • Otto, F. & Tsou, K. C., 1985. A comparative study of DAPI, DIPI and Hoechst 33258 and 33342 as chromosomal DNA stains. Stain Technol. 60: 7–11.

    Google Scholar 

  • Schaeffer, B., 1967. Comments on elasmobranch evolution. In: Sharks, skates and rays. P. W.Gilbert, R. F.Mathewson and D. P.Rall, eds. John Hopkins Press, Baltimore.

    Google Scholar 

  • Schwartz, F. J. & Maddock, M. B., 1986. Comparisons of karyotypes and cellular DNA contents within and between major lines of elasmobranchs. In: Indo-Pacific fish Biology: 148–157, T.Uyeno, R.Arai, T.Taniuchi & K.Matsuura, eds, Ichthyol. Soc. Jap., Tokio.

    Google Scholar 

  • Stingo, V., DuBuit, M. H. & Odierna, G., 1980. The genome size of some selachian fishes. Boll. Zool. 47: 129–137.

    Google Scholar 

  • Stingo, V. & Capriglione, T., 1986. DNA and chromosomal evolution in cartilaginous fish. In: Indo-Pacific fish Biology: 140–147, T.Uyeno, R.Arai, T.Taniuchi & K.Matsuura, eds, Ichthyol. Soc. Jap., Tokio.

    Google Scholar 

  • Stingo, V., 1986. Correlazioni tra quantità di DNA totale e DNA DAPI-positivo in Teleostei e Selaci. Bas. appl. Histochem., 30/suppl., 164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingo, V., Capriglione, T., Rocco, L. et al. Genome size and A-T rich DNA in selachians. Genetica 79, 197–205 (1989). https://doi.org/10.1007/BF00121513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121513

Keywords

Navigation