Skip to main content
Log in

Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fibre types in lateral muscle from hatching to adult

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Post-hatching development of lateral muscle in a teleost fish, Sparus aurata (L) was examined. At hatching only two fibre types were present; several layers of mitochondria-poor, myofibril-rich deep muscle fibres surrounded the notochord and were covered by a superficial monolayer of mitochondria-rich, myofibril-poor fibres. A third ultrastructurally distinct fibre type first appeared as one or two fibres located just under the lateral line at 6 days post-hatching. This type, which gradually increased in number during larval life, contained a slow isoform of myosin, identified by mATPase staining and immunostaining with myosin isoform-specific antibodies. Deep muscle fibres — the presumptive fast-white type — contained a fast myosin, and superficial monolayer fibres an isoform similar but not identical to that in adult pink muscle fibres. The only fibres present during larval life which showed a clear change in myosin expression were the superficial monolayer fibres, which gradually transformed into the slow type post-larvally. Pink muscle fibres first appeared near the end of larval life. Both slow and pink muscle fibres remained concentrated around the horizontal septum under the lateral line during larval life, expanding outwards towards the apices of the myotomes only after metamorphosis. Between 60 and 90 days very small diameter fibres with a distinct mATPase profile appeared scattered throughout the deep, fast-white muscle layer, giving it a ‘mosaic’ appearance, which persisted into adult life. A marked expansion in the slow muscle layer began at the same time, partly by transformation of superficial monolayer fibres, but mainly by addition of new fibres both on the deep surface of the superficial monolayer and close to the lateral line. The order of appearance of these fibre types, their myosin composition, and the significance of the superificial monolayer layer are discussed and compared to muscle fibre type development in higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessio, G. & Gandolfi, G. (1975) Riproduzione artificiale di Orata, Sparus aurata (L.) (Osteichthyes, Sparidae). IV Sviluppo embrionale e postnatale. Istituto Lombardo (Memorie Sc. Mat.) 26, 95–132.

    Google Scholar 

  • Bandman, E., Matsuda, R. & Strohman, R. C. (1982) Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev. Biol. 95, 508–18.

    Google Scholar 

  • Carpene, E. & Veggetti, A. (1981) Increase in muscle fibres in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei). Experientia 37, 191–3.

    Google Scholar 

  • Carpené, E., Veggetti, A. & Mascarello, F. (1982) Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J. Fish Biol. 20, 379–96.

    Google Scholar 

  • Crockford, T. & Johnston, I. A. (1993) Developmental changes in the composition of myofibrillar proteins in the swimming muscles of the Atlantic herring, Clupea harengus. Mar. Biol. 115, 15–22.

    Google Scholar 

  • Crow, M. T. & Stockdale, F. E. (1986) The developmental programme of fast myosin heavy chain expression in avian skeletal muscles. Dev. Biol. 118, 333–42.

    Google Scholar 

  • Dhoot, G. K. (1988) Identification and changes in the pattern of expression of slow-skeletal-muscle-like myosin heavy chains in a developing muscle. Differentiation 37, 53–61.

    Google Scholar 

  • Draeger, A., Weeds, A. G. & Fitzsimons, R. B. (1987) Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. J. Neurol. Sci. 81, 19–43.

    Google Scholar 

  • Felsenfeld, A. L., Curry, M. & Kimmel, C. B. (1991) The fub-1 mutation blocks initial myofibrillar formation in Zebrafish muscle pioneer cells. Dev. Biol. 148, 23–30.

    Google Scholar 

  • Focant, B., Huriaux, F., VandeWalle, P., Castelli, M. & Goessens, G. (1992) Myosin, parvalbumin and myofibril expression in barbel (Barbus barbus L.) lateral white muscle during development. Fish Physiol. Biochem. 10, 133–43.

    Google Scholar 

  • Harris, A. J., Fitzsimons, R. B. & McEwan, J. C. (1989) Neural control of the sequence of expression of myosin heavy chain isoforms in foetal mammalian muscles. Development 107, 751–69.

    Google Scholar 

  • Higgins, P. J. (1990) The histochemistry of muscle in juvenile Atlantic salmon (Salmo salar L.). J. Fish Biol. 37, 521–9.

    Google Scholar 

  • Hoh, J. F. Y. (1991) Myogenic regulation of mammalian skeletal muscle fibres. News Physiol. Sci. 6, 1–6.

    Google Scholar 

  • Hughes, S. M., Cho, M., Karsch-Mizrachi, L., Travis, M., Silberstein, L., Leinwand, L. & Blau, H. (1993) Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev. Biol. 158, 183–99.

    Google Scholar 

  • Johnston, I. A. (1994) Development and plasticity of fish muscle with growth. Bas. Appl. Myol. 4, 253–68.

    Google Scholar 

  • Johnston, I. A. & Horne, Z. (1994) Immunocytochemical investigation of muscle differentiation in the Atlantic herring (Clupea harengus: Teleostei). J. Mar. Biol. Ass. U.K. 74, 79–91.

    Google Scholar 

  • Koumans, J. T. M., Akster, H. A., Booms, G. H. R., Lemmens, C. J. J. & Osse, J. W. M. (1991) Numbers of myosatellite cells in white axial muscle of growing fish: Cyprinus carpio L. (Teleostei). Am. J. Anat. 192, 418–24.

    Google Scholar 

  • Koumans, J. T. M., Akster, H. A., Booms, G. H. R. & Osse, J. W. M. (1993) Growth of carp (Cyprinus carpio) white axial muscle; hyperplasia and hypertrophy in relation to the myonucleus/sarcoplasm ratio and the occurrence of different subclasses of myogenic cells. J. Fish Biol. 43, 69–80.

    Google Scholar 

  • Lumare, F. & Villani, P. (1970) Contributo alla conoscenza delle uova e dei primi stadi larvali di Sparus aurata (L.). Pubbl. Staz. zool. Napoli. 38, 364–9.

    Google Scholar 

  • Maier, A., McEwan, J. C., Dodds, K. G., Fischman, D. A., Fitzsimons, R. B. & Harris, A. J. (1992) Myosin heavy chain composition of single fibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles. J. Muscle Res. Cell Motil. 13, 551–72.

    Google Scholar 

  • Martinez, I., Christiansen, J. S., Ofstad, R. & Olsen, R. L. (1991) Comparison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic charr Salvelinus alpinus (L.): sequential expression of different myosin heavy chains during development of the fast white skeletal muscle. Eur. J. Biochem. 195, 743–53.

    Google Scholar 

  • Mascarello, F., Romanello, M. G. & Scapolo, P. A. (1986) Histochemical and immunohistochemical profile of pink muscle fibres in some teleosts. Histochemistry 84, 251–5.

    Google Scholar 

  • Miller, J. B., Everitt, E. A., Smith, T. H., Block, N. E. & Dominov, J. A. (1993) Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. BioEssays 15, 191–6.

    Google Scholar 

  • Nag, A. C. & Nursall, J. R. (1972) Histogenesis of white and red muscle fibres of trunk muscles of a fish Salmo gairdneri. Cytobios 6, 227–46.

    Google Scholar 

  • Narusawa, M., Fitzsimons, R. B., Izumo, S., Nadalginard, B., Rubinstein, N. A. & Kelly, A. M. (1987) Slow myosin in developing rat skeletal muscle. J. Cell Biol. 104, 447–59.

    Google Scholar 

  • Neville, C. M. & Schmidt, J. (1992) Expression of myogenic factors in skeletal muscle and electric organ of Torpedo californica. FEBS Lett. 305, 23–6.

    Google Scholar 

  • Page, S., Miller, J. B., DiMario, J. X., Hager, E. J., Moser, A. & Stockdale, F. E. (1992) Developmentally regulated expression of three slow isoforms of myosin heavy chain: diversity among the first fibres to form in avian muscle. Dev. Biol. 154, 118–28.

    Google Scholar 

  • Proctor, C., Mosse, P. R. L. & Hudson, R. C. L. (1980) A histochemical and ultrastructural study of the development of the propulsive musculature of the brown trout, Salmo trutta L., in relation to its swimming behaviour. J. Fish Biol. 16, 303–21.

    Google Scholar 

  • Romanello, M. G., Scapolo, P. A., Luprano, S. & Mascarello, F. (1987) Post-larval growth in the lateral white muscle of the eel, Anguilla anguilla. J. Fish Biol. 30, 161–72.

    Google Scholar 

  • Rowlerson, A. (1994) An outline of fibre types in vertebrate skeletal muscle: histochemical identification and myosin isoforms. Bas. Appl. Myol. 4, 333–52.

    Google Scholar 

  • Rowlerson, A. M. & Spurway, N. C. (1988) Histochemical and immunohistochemical properties of skeletal muscle fibres from Rana and Xenopus. Histochem. J. 20, 657–73.

    Google Scholar 

  • Rowlerson, A. M., Scapolo, P. A., Mascarello, F., Carpené, E. & Veggetti, A. (1985) Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Muscle Res. Cell Motil. 6, 601–40.

    Google Scholar 

  • Rowlerson, A., Mascarello, F., Radaelli, G. & Veggetti, A. (1994) Differentiation and growth of muscle in the fish Sparus aurata (L): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J. Muscle Res. Cell Motil. 16, 223–35.

    Google Scholar 

  • Russell, S. D., Cambon, N. A. & Whalen, R. G.. (1993) Two types of neonatal-to-adult fast myosin heavy chain transitions in rat hindlimb muscle fibres. Dev. Biol. 157, 359–70.

    Google Scholar 

  • Scapolo, P. A., Veggetti, A., Mascarello, F. & Romanello, M. G. (1988) Developmental transitions of myosin isoforms and organisation of the lateral muscle in the teleost Dicentrarchus labrax (L). Anat. Embryol. 178, 287–95.

    Google Scholar 

  • Stickland, N. C. (1983) Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J. Anat. 137, 323–33.

    Google Scholar 

  • Stockdale, F. E. (1992) Myogenic cell lineages. Dev. Biol. 154, 284–98.

    Google Scholar 

  • Stockdale, F. E. & Miller, J. B. (1987) The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscle. Dev. Biol. 123, 1–9.

    Google Scholar 

  • Van Raamsdonk, W., Pool, C. W. & te Kronnie, G. (1978) Differentation of muscle fiber types in the teleost Brachydanio rerio. Anat. Embryol. 153, 137–55.

    Google Scholar 

  • Van Raamsdonk, W., Van 'T Veer, L., Veeken, K., Heyting, C. & Pool, C. W. (1982) Differentiation of muscle fiber types in the teleost Brachydanio rerio, the Zebrafish, Anat. Embryol. 164, 51–62.

    Google Scholar 

  • Veggetti, A., Mascarello, F., Scapolo, P. A. & Rowlerson, A. (1990) Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.). An ultrastructural and morphometric study. Anat. Embryol. 182, 1–10.

    Google Scholar 

  • Veggetti, A., Mascarello, F., Scapolo, P. A., Rowlerson, A. & Candia Carnevali, M. D. (1993) Muscle growth and myosin isoform transitions during development of a small teleost fish, Poecilia reticulata (Peters) (Atheriniformes, Poeciliidae): a histyochemical, immunohistochemical, ultrastructural and morphometric study. Anat. Embryol. 187, 353–61.

    Google Scholar 

  • Weatherley, A. H. & Gill, H. S. (1981) Characteristics of mosaic muscle growth in rainbow trout Salmo gairdneri. Experientia 37, 1102–3.

    Google Scholar 

  • Weatherley, A. H., Gill, H. S. & Rogers, S. C. (1980) The relationship between mosaic muscle fibres and size in rainbow trout (Salmo gairdneri). J. Fish Biol. 17, 603–10.

    Google Scholar 

  • Weatherley, A. H., Gill, H. S. & Lobo, A. F. (1988) Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J. Fish Biol. 33, 851–9.

    Google Scholar 

  • Weydert, A. (1988) Myogenesis and gene expression. Bull. Inst. Pasteur 86, 159–210.

    Google Scholar 

  • Whalen, R. G., Sell, G. S., Butler-Browne, G. S., Schwartz, K., Bouveret, P. & Pinset-Harstrom, I. (1981) Three myosin heavy chain isozymes appear sequentially in rat muscle development. Nature 292, 805–9.

    Google Scholar 

  • Zoar, Y., Billard, R. & Weil, C. (1984) La reproduction de la daurade (Sparus aurata) et du bar (Dicentrarchus labrax): connaissance du cycle sexuel et controle de la gamétogenèse et de la ponte. In L'aquaculture du Bar et des Sparidés (edited by Barnabé, G. & Billard, R.), pp. 3–24. Paris: INRA Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascarello, F., Rowlerson, A., Radaelli, G. et al. Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fibre types in lateral muscle from hatching to adult. J Muscle Res Cell Motil 16, 213–222 (1995). https://doi.org/10.1007/BF00121130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121130

Keywords

Navigation