Skip to main content
Log in

Effects of antiarrhythmic drugs on canine ventricular arrhythmia models: Which electrophysiological characteristics of drugs are related to their effectiveness?

  • Current Topic in Anatiarrhythmic Treatment—Combined Use of Antiarrhythmic Drugs
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

In order to compare and clarify the effects of various antiarrhythmic drugs when given as monotherapy, we reevaluated our previous data on antiarrhythmic drugs and recalculated antiarrhythmic plasma concentrations of drugs for several canine arrhythmia models. We used three spontaneously occurring arrhythmias: a) digitalis-, b) two-stage coronary ligation-, and c) adrenaline-induced arrhythmias. All antiarrhythmic drugs of class I suppressed digitalis arrhythmia, and, except for lidocaine, also suppressed coronary ligation arrhythmia. Class II antiarrhythmic drugs, beta blockers, and class IV antiarrhythmic drugs, Ca antagonists, had common features of effectiveness and suppressed adrenaline arrhythmia in relatively low concentrations. Class III drugs were not effective on these three arrhythmias. Differences among the antiarrhythmic effects of class I drugs could not be explained by their subclassification based either on action potential duration or kinetic properties of dissociation or association with Na channels. New triggered arrhythmia models in vivo and in vitro canine hearts were developed, and drug effects were not the same as those on the three spontaneously occurring arrhythmia models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto, K, Tsukada, T, Matsuda, H, et al. Antiarrhythmic effect of oxprenolol on halothane-epinephrine and coronary ligation induced ventricular arrhythmias in beagle dogs. Jpn J Pharmacol 1978;28:535–544.

    Google Scholar 

  2. Hashimoto, K, Tsukada, T, Matsuda, H, et al. Antiarrhythmic effects of bupranolol against canine ventricular arrhythmias induced by halothane-adrenaline or two stage coronary ligation. J Cardiovasc Pharmacol 1979;1:205–217.

    Google Scholar 

  3. Hashimoto, K, Satoh, H, Shibuya, T, Imai, S. Canine-effective plasma concentrations of antiarrhythmic drugs on the twostage coronary ligation arrhythmia. J Pharmacol Exp Ther 1982:223:801–810.

    Google Scholar 

  4. Hashimoto, K, Shibuya, T, Satoh, H, Imai, S. Quantitative analysis of the antiarrhythmic effect of drugs on canine ventricular arrhythmias by the determination of minimum effective plasma concentrations. Jpn Circ J 1983;47:92–97.

    Google Scholar 

  5. Shibuya, T, Hashimoto, K, Imai, S. Effective plasma concentrations of antiarrhythmic drugs against sustained halothane-adrenaline arrhythmia in dogs. J Cardiovasc Pharmacol 1983;5:538–545.

    Google Scholar 

  6. Hashimoto, K, Komori, S, Ishii, M, Kamiya, J. Effective plasma concentrations of aprindine in canine ventricular arrhythmias. J Cardiovasc Pharmacol 1984;6:12–19.

    Google Scholar 

  7. Hashimoto, K, Ishii, M, Komori, S. Antiarrhythmic plasma concentrations of mexiletine on canine ventricular arrhythmias. J Cardiovasc Pharmacol 1984;6:213–219.

    Google Scholar 

  8. Ishii, M, Komori, S, Satoh, H, et al. Effects of N-696, a new β-blocking agent, on canine experimental arrhythmias. Folia Pharmacol Japon 1984;84:259–266 (in Japanese).

    Google Scholar 

  9. Komori, S, Ishii, M, Hashimoto, K. Antiarrhythmic effects of coronary vasodilators on canine ventricular arrhythmia models. Coronary 1984;1:397–404 (in Japanese).

    Google Scholar 

  10. Hashimoto, K, Ishii, M, Komori, S, Mitsuhashi, H. Canine digitalis arrhythmia as a model for detecting Na-channel blocking antiarrhythmic drugs: A comparative study using other canine arrhythmia models and the new antiarrhythmic drugs, propafenone, tocainide, and SUN 1165. Heart Vessels 1985;1:29–35.

    Google Scholar 

  11. Komori, S, Ishii, M, Hashimoto, K. Antiarrhythmic effects of coronary vasodilators on canine ventricular arrhythmia models. Jpn J Pharmacol 1985;38:73–82.

    Google Scholar 

  12. Ishii, M, Komori, S, Nishisono, Y, et al. Effects of pindolol on canine experimental arrhythmias. Coronary 1985;2:103–108 (in Japanese).

    Google Scholar 

  13. Hashimoto, K, Mitsuhashi, H, Nakamura, T, Akiyama, K. Antiarrhythmic effects of possible anti-ischemic drugs. Yamanashi Med J 1986;1:1–10.

    Google Scholar 

  14. Hashimoto, K, Mitsuhashi, H. Effects of OPC-8212, a new positive inotropic agent, on canine ventricular arrhythmias. Br J Pharmacol 1986;88:915–921.

    Google Scholar 

  15. Mitsuhashi H, Akiyama K, Hashimoto K. Effects of new antiarrhythmic drugs, AFD-21 and AFD-19 on canine ventricular arrhythmias (in Japanese). Folia Pharmacol Japon 1986;88:167p.

    Google Scholar 

  16. Mitsuhashi, H, Akiyama, K, Hashimoto, K. Effects of betaxolol, a new beta 1 selective blocker, on canine ventricular arrhythmias. Jpn J Pharmacol 1987;43:179–185.

    Google Scholar 

  17. Hashimoto, K, Akiyama, K, Mitsuhashi, H. Antiarrhythmic plasma concentrations of cibenzoline on canine ventricular arrhythmias. J Cardiovasc Pharmacol 1987;9:148–153.

    Google Scholar 

  18. Mitsuhashi, H, Akiyama, K, Hashimoto, K, et al. Antiarrhythmic effects of a new drug, E-0747, on canine ventricular arrhythmia models. Jpn J Pharmacol 1987;44:155–162.

    Google Scholar 

  19. Hashimoto, K. Electrophysiological correlates of antiarrhythmic effects of drugs and pharmacokinetic principles examined using canine ventricular arrhythmias. In: Papp, JGY, ed. Cardiovascular pharmacology '87. Budapest: Akademiai Kiado, 1987:79–93.

    Google Scholar 

  20. Mitsuhashi, H, Hashimoto, K. Antiarrhythmic profile of a new class 1 drug, AHR 10718, on canine atrial and ventricular arrhythmia models. Jpn J Pharmacol 1988;46:349–358.

    Google Scholar 

  21. Hashimoto, K, Watanabe, K, Sugiyama, A. Antiarrhythmic plasma concentrations of pirmenol on canine ventricular arrhythmias. Jpn J Pharmacol 1988;48:273–282.

    Google Scholar 

  22. Matsuzaki T, Haruno A, Sugiyama A, et al. Effects of AFD-21 and AFD-19 on canine coronary ligation arrhythmias (abstract in Japanese). Folia Pharmacol Japan 1988;92:36p.

    Google Scholar 

  23. Matsuzaki, T, Haruno, A, Hashimoto, K. Effects of gallopamil on canine ventricular arrhythmias (abstract in Japanese). Jpn J Electrocardiol 1988;8:470.

    Google Scholar 

  24. Hashimoto, K, Akiyama, K, Mitsuhashi, H. Antiarrhythmic effect of a new class 1 antiarrhythmic drug, nicainoprol, on canine ventricular arrhythmias. Jpn J Pharmacol 1989;49: 245–254.

    Google Scholar 

  25. Hashimoto, K, Ishii, M, Watanabe, K. Relationships between ventricular arrhythmias and plasma concentrations of ME3202 (CM7857) in dogs. J Cardiovasc Pharmacol 1989;14:121–126.

    Google Scholar 

  26. Akiyama, K, Hashimoto, K. Antiarrhythmic effects of the class 1c antiarrhythmic drug, flecainide, on canine ventricular arrhythmia models. Jpn Heart J 1989;30:487–495.

    Google Scholar 

  27. Hashimoto, K, Matsuzaki, T, Haruno, A. Antiarrhythmic plasma concentrations of NIK-244 on canine ventricular arrhythmias. J Cardiovasc Pharmacol 1989;14:892–898.

    Google Scholar 

  28. Hashimoto, K, Watanabe, K, Mitsuhashi, H. Antiarrhythmic effect of a new class 1 antiarrhythmic drug, AN-132, on ventricular arrhythmias in beagles. Cardiovasc Drugs Ther 1989;3:683–690.

    Google Scholar 

  29. Hashimoto, K, Watanabe, K, Mochizuki, S, Tomiyama, A. Effects of KT-362, a new Na and Ca influx and Ca release inhibitor, on canine ventricular arrhythmias. Jpn J Pharmacol 1989;51:475–482.

    Google Scholar 

  30. Hashimoto, K, Sugiyama, A, Haruno, A, et al. Effects of a new antiarrhythmic drug TYB-3823 on canine ventricular arrhythmia models. J. Cardiovasc Pharmacol 1991;17: 336–342.

    Google Scholar 

  31. Haruno A, Matsuzaki T, Hashimoto K. Antiarrhythmic effects of YUTAC on canine ventricular arrhythmias (abstract). J Mol Cell Cardiol 1989;21(Suppl. II):S12.

    Google Scholar 

  32. Haruno A, Hashimoto K. Effects of SA-3212, a new class I and IV antiarrhythmic drug, on canine ventricular arrhythmias (abstract). Jpn J Pharmacol 1990;52(Suppl.):252p.

    Google Scholar 

  33. Akiyama, K, Hashimoto, K. Effects of lidocaine, disopyramide and verapamil on the in vivo triggered ventricular arrhythmia in digitalized canine heart. Jpn J Pharmacol 1990;53:419–426.

    Google Scholar 

  34. Watanabe, K, Hashimoto, K. Effect of OPC-88117 on “in vivo” triggered activity in anesthetized open chest dogs (abstract). Jpn Circ J 1988;52(Suppl.):914.

    Google Scholar 

  35. Haruno, A, Sugiyama, A, Hashimoto, K. Effects of YUTAC on newly developed triggered arrhythmia models (abstract in Japanese). Jpn J Electrocardiol 1989;9:670.

    Google Scholar 

  36. Lucchesi, BR, Hardman, HF. The influence of dichloroiso-proterenol (DCI) and related compounds upon ouabain-and acetylstrophanthidin-induced cardiac arrhythmias. J Pharmacol Exp Ther 1961;132:372–381.

    Google Scholar 

  37. Karagueuzian, HS, Mandel, WJ. Electrophysiologic mechanisms of ischemic ventricular arrhythmias: Experimentalclinical correlation. In: Mandel, WJ, ed. Cardiac arrhythmias, their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott, 1987:452–474.

    Google Scholar 

  38. Lown, B, Wolf, M. Approaches to sudden death from coronary heart disease. Circulation 1971;44:130–142.

    Google Scholar 

  39. Hagemeijer, F, Lown, B. Effect of heart rate on electrically induced repetitive ventricular responses in the digitalized dog. Circ Res 1970;27:333–344.

    Google Scholar 

  40. Hashimoto, K, Moe, GK. Transient depolarizations induced by acetylstrophanthidin in specialized tissue of dog atrium and ventricle. Circ Res 1973;32:618–624.

    Google Scholar 

  41. Hashimoto K, Haruno A, Matsuzaki T. Effects of class III antiarrhythmic drugs on canine automatic ventricular arrhythmia models (abstract). J Moll Cell Cardiol 1989;21 (Suppl. II):S12.

  42. Hondeghem, LM, Katzung, BG. Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Ann Rev Pharmacol Toxicol 1984;24:387–423.

    Google Scholar 

  43. Toyama, J, Honjo, H, Kamiya, K, et al. Classification of class 1 drugs on the basis of the modulated receptor concept. In: Toyama, J, Hondeghem, LM, eds. Current topics in antiarrhythmic agents, mode of action and clinical usage, Tokyo: Excerpta Medica, 1989:175–188.

    Google Scholar 

  44. Cranefield PF. Action potentials, afterpotentials, and arrhythmias. Circ Res 1977:415–423.

  45. Wit, AL, Rosen, MR. Afterdepolarization and triggered activity. In: Fozzard, HA, Haber, E, Jennings, RB, et al., eds: The heart and cardiovascular system, New York: Raven Press, 1986:1449–1490.

    Google Scholar 

  46. Toyama, J, Kodama, I, Honjo, H, Kamiya, K. Electrophysiological effects of OPC-88177, a new antiarrhythmic agent on papillary muscles and single ventricular myocytes isolated from guinea-pig hearts. Br J Pharmacol 1989;98:177–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, K., Haruno, A., Matsuzaki, T. et al. Effects of antiarrhythmic drugs on canine ventricular arrhythmia models: Which electrophysiological characteristics of drugs are related to their effectiveness?. Cardiovasc Drug Ther 5 (Suppl 4), 805–817 (1991). https://doi.org/10.1007/BF00120829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120829

Key Words

Navigation