Skip to main content
Log in

Diffusion of dextrans and microspheres in the human amniotic basement membrane model

  • Brief communication
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

The human amniotic basement membrane model was utilized to determine diffusion ratios of dextrans and beads according to size selectivity. Diffusion through both intact and denuded amnions was determined after 24 and 72 h. Four neutrally charged fluorescein isothiocyanate labeled dextrans, having molecular weights of 17 900, 42 000, 71 200 and 156 000, diffused through the amnion. The amnion functioned as a sieve in that the passage of dextrans was increasingly restricted as molecular weight increased. In contrast, uncharged latex microspheres (1·05um ± 0·07 µm (SD)) and fluorescent carboxylated microspheres (1·57 µm ± 0·13 um (SD)) failed to pass through the amnion. Light and electron microscopy revealed no preformed channels through which the 1·05 µm microspheres could pass through the amnion. Statistical analysis of cross-sectional thickness of individual and similarly treated amnions (intact or denuded) showed a difference in thickness (P = 0·05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bohrer, M. P., Baylis, C., Humes, H. D., Glassock, R. J., Robertson, C. R., and Brenner, B. M., 1978, Permselectivity of the glomerular capillary wall: Facilitated filtration of circulating polycations. Journal of Clinical Investigation, 61, 72–78.

    Google Scholar 

  2. Caufield, J. P., and Farquhar, M. G., 1978, Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Laboratory Investigation, 39, 505–512.

    Google Scholar 

  3. Farquhar, M. G., 1980, Role of the basement membrane in glomerular filtration: Results obtained with electron dense tracers. Functional Ultrastructure of the Kidney, edited by A. B. Maunsbach, T. S. Olsen and E. I. Christensen (New York: Academic Press), pp. 31–51.

    Google Scholar 

  4. Farquhar, M. G., 1981, The glomerular basement membrane: a selective macromolecular filter. Cell Biology of Extracellular Matrix, edited by E. D. Hay (New York: Plenum Press), pp. 335–378.

    Google Scholar 

  5. Franke, H., and Estel, C., 1978, Untersuchungen uber die Ultrastruktur and Permeabilitat des Amnions unter besonderer Berucksichtigung mikrofilamentarer and mikrotubularer Struckturen. Archiv fur Gynaekologie, 225, 319–338.

    Google Scholar 

  6. Gehlsen, K. R., Wagner, H. N., Jr, and Hendrix, M. J., 1984, Membrane invasion culture system (MILS). Medical Instrumentation, 18, 268–271.

    Google Scholar 

  7. Hempel, E., 1976, Ultrastrukturelle Untersuchungen uber die Durchlassigkeit des Amnionepithels fur Peroxidase and Ferritin. Ein Beitrag zum paraplazentaren Stoffaustausch. Zentralblatt fur Gynakologie, 98, 1565–1572.

    Google Scholar 

  8. Hendrix, M. J. C., Gehlsen, K. R., Wagner, H. N., Rodney, S. R., Misiorowski, R. L., and Meyskens, F. L., 1985, In vitro quantification of melanoma tumor cell invasion. Clinical and Experimental Metastasis, 3, 221–233.

    Google Scholar 

  9. King, B. F., 1980, Developmental changes in the fine structure of rhesus monkey amnion. American Journal of Anatomy, 157, 285–307.

    Google Scholar 

  10. Liotta, L. A., Lee, C. W., and Morakis, D. J., 1980, New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Letters, 11, 141–152.

    Google Scholar 

  11. Mitchell, M. S., and Capizzi, R. L., 1982, Neoplastic Diseases. Medical Complications During Pregnancy, edited by G. N. Burrow and T. F. Ferris (Philadelphia: Saunders), pp. 510–537.

    Google Scholar 

  12. PERSKY, B., Ostrowski, L. E., Pagast, P., Ahsan, A., and Schultz, R. M., 1986, Inhibition of proteolytic enzymes in the in vitro amnion model for basement membrane invasion. Cancer Research, 46, 4129–4134.

    Google Scholar 

  13. Potter, J. F., and Schoeneman, M., 1970, Metastasis of maternal cancer to the placenta and fetus. Cancer, 25, 380–388.

    Google Scholar 

  14. Tullberg, K. F., and Burger, M. M., 1985, Selection of B16 melanoma cells with increased metastatic potential and low intercellular cohesion using nucleopore filters. Invasion and Metastasis, 5, 1–15.

    Google Scholar 

  15. Vvan Herendael, B. J., Oberti, C., and Brosens, I., 1978, Microanatomy of the human amniotic membranes. A light microscopic transmission and scanning electron microscopic study. American Journal of Obstetrics and Gynecology, 131, 872–880.

    Google Scholar 

  16. Venkatachalam, M. A., and Rennke, H. G., 1980, Glomerular filtration of macromolecules: Structural, molecular, and functional determinants. Renal Pathophysiology, edited by A. Leaf, G. Giebisch, L. Bolis and S. Gorini (New York: Raven Press), pp. 43–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persky, B., Grganto, D.M. Diffusion of dextrans and microspheres in the human amniotic basement membrane model. Clin Exp Metast 5, 321–328 (1987). https://doi.org/10.1007/BF00120727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120727

Keywords

Navigation