Skip to main content
Log in

Divalent cation-dependent adhesion at the myotendinous junction: ultrastructure and mechanics of failure

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Junctional microfibrils, which span the lamina lucida of the vertebrate myotendinous junction, are thought to function in force transmission at the junction. This hypothesis has been tested by disrupting junctional microfibrils through elimination of extracellular divalent cations, and determining the effects of this treatment on the ultrastructure and mechanics of whole frog skeletal muscles passively stretched to failure. Muscles incubated in divalent cation-free solution failed exclusively in the lamina lucida of the myotendinous junction, while control muscles all failed within the muscle fibres, several millimetres away from the junction. Failure sites from divalent cation-free muscles incubated with antibodies against collagen type IV, laminin, and tenascin showed no labelling of the avulsed ends of the muscle fibres, indicating that remnants of junctional microfibrils observed on the cell surface are not composed of any of these extracellular proteins. All three proteins were present on the tendon side of the failure site, confirming that the lamina densa remains attached to the tendon. Breaking stress for control muscles was 3.47×105 N m-2, and for divalent cation-free muscles, 1.84×105 N m-2, or approximately half the control value. Breaking strain averaged 1.17 for divalent cation-free muscles and 1.39 for controls, although the difference was not significant. We conclude that junctional microfibrils are components of a divalent cation-dependent adhesion mechanism at the myotendinous junction. In addition, ultrastructural analysis of divalent cation-free fibres stretched just short of failure suggests that a second, divalent cation-independent mechanism persists along the non-junctional cell surface, and can transmit substantial passive tension from myofibrils laterally to the extracellular matrix, bypassing the failed myotendinous junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AJIRI, T., KIMURA, T., ITO, R. & INOKUCHI, S. (1978) Microfibrils in the myotendon junctions. Acta Anat. 102, 433–9.

    Google Scholar 

  • ALMEKINDERS, L. C. & GILBERT, J. A. (1986) Healing of experimental muscle strains and the effects of nonsteroidal antiinflammatory medication. Am. J. Sports Med. 14, 303–8.

    Google Scholar 

  • BJERKNES, M. & CHENG, H. (1981) Methods for the isolation of intact epithelium from the mouse intestine. Anat. Rec. 199, 565–74.

    Google Scholar 

  • BOZYCZKO, D., DECKER, C., MUSCHLER, J. & HORWITZ, A. F. (1989) Integrin on developing and adult skeletal muscle. Exp. Cell Res. 183, 72–91.

    Google Scholar 

  • BUCHTHAL, F. & KNAPPEIS, G. G. (1940) Diffraction spectra and minute structure of the cross-striated muscle fibre. Skand. Archiv. 83, 281–307.

    Google Scholar 

  • BURRIDGE, K. & MANGEAT, P. (1984) An interaction between vinculin and talin. Nature 308, 744–6.

    Google Scholar 

  • CASELLA, C. (1950) Tensile force in total striated muscle, isolated fibre and sarcolemma. Acta Physiol. Scand. 21, 380–401.

    Google Scholar 

  • CHIQUET, M. & FAMBROUGH, D. M. (1984) Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol. 98, 1926–36.

    Google Scholar 

  • CREVEY, B. J., LANGER, G. A. & FRANK, J. S. (1978) Role of Ca2+ in maintenance of rabbit myocardial cell membrane structural and functional integrity. J. Mol. Cell. Cardiol. 10, 1081–100.

    Google Scholar 

  • ELLISON, J. & GARROD, D. R. (1984) Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of hemidesmosomes to the dermis. J. Cell Sci. 72, 163–72.

    Google Scholar 

  • ENGVALL, E. & PERLMANN, P. (1972) Enzyme-linked immunosorbent assay, ELISA. J. Immunol. 109, 129–35.

    Google Scholar 

  • FRANK, J. S., LANGER, G. A., NUDD, L. M. & SERAYDARIAN, K. (1977) The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circ. Res. 41, 702–14.

    Google Scholar 

  • FRANK, J. S., RICH, T. L., BEYDLER, S. & KREMAN, M. (1982) Calcium depletion in rabbit myocardium. Ultrastructure of the sarcolemma and correlation with the calcium paradox. Circ. Res. 51, 117–30.

    Google Scholar 

  • GARRETT JR., W. E. (1983) Strains and sprains in athletes. Postgrad. Med. 73, 200–9.

    Google Scholar 

  • GARRETT JR., W. E. & TIDBALL, J. G. (1988) Myotendinous junction: structure, function, and failure. In Injury and Repair of the Musculoskeletal Soft Tissues (edited by Woo, S. L-Y. & Buckwalter, J. A.) pp. 171–207. Park Ridge, American Academy of Orthopaedic Surgeons.

    Google Scholar 

  • GARRETT JR., W. E., SAFRAN, M. R., SEABER, A. V., GLISSON, R. R. & RIBBECK, B. M. (1987) Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am. J. Sports Med. 15, 448–54.

    Google Scholar 

  • GARRETT JR., W. E., NIKOLAOU, P. K., RIBBECK, B. M., GLISSON, R. R. & SEABER, A. V. (1988) The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. Am. J. Sports Med. 16, 7–12.

    Google Scholar 

  • GEIGER, B. (1979) A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18, 193–205.

    Google Scholar 

  • GIBRALTER, D. & TURNER, D. C. (1985) Dual adhesion systems of chick myoblasts. Dev. Biol. 112, 292–307.

    Google Scholar 

  • HANAK, H. & BOCK, P. (1971) Die feinstruktur der muskel-sehnenverbindung von skelett- und herzmuskel. J. Ultrastruc. Res. 36, 68–85.

    Google Scholar 

  • HSU, S. M., RAINE, L. & FANGER, H. (1981) A comparative study of the peroxidase-antiperoxidase method and an avidinbiotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. J. Clin. Pathol. 75, 734–8.

    Google Scholar 

  • ISHIKAWA, H. (1965) The fine structure of myo-tendon junction in some mammalian skeletal muscles. Arch. Histol. Jap. 25, 275–96.

    Google Scholar 

  • KLEBE, R. J. (1974) Isolation of a collagen-dependent cell attachment factor. Nature 250, 248–51.

    Google Scholar 

  • KLEBE, R. J., HALL, J. R., ROSENBERGER, P. & DICKEY, D. (1977) Cell attachment to collagen: the ionic requirements. Exper. Cell Res. 110, 419–25.

    Google Scholar 

  • KORNELIUSSEN, H. (1973) Ultrastructure of myotendinous junctions in Myxsine and rat: specializations between the plasma membrane and the lamina densa. Z. Anat. Entwick.-Gesch. 142, 91–104.

    Google Scholar 

  • KYHSE-ANDERSEN, J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Meth. 10, 203–9.

    Google Scholar 

  • LIGHTNER, V. A., GUMKOWSKI, F., BIGNER, D. D. & ERICKSON, H. P. (1989) Tenascin/hexabrachion in human skin: biochemical identification and localization by light and electron microscopy. J. Cell Biol. 108, 2483–93.

    Google Scholar 

  • LOFTUS, J. C., O'TOOLE, T. E., PLOW, E. F., GLASS, A., FRELINGER, A. L. & GINSBERG, M. H. (1990) A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 249, 915–18.

    Google Scholar 

  • MACKAY, B., HARROP, T. J. & MUIR, A. R. (1969) The fine structure of the muscle tendon junction in the rat. Acta Anat. 73, 588–604.

    Google Scholar 

  • MAGID, A. & LAW, D. J. (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230, 1280–2.

    Google Scholar 

  • MAGID, A., TING-BEALL, H. P., CARVELL, M., KONTIS, T. & LUCAVECHE, C. (1984) Connecting filaments, core filaments, and side-struts: a proposal to add three new load-bearing structures to the sliding filament model. In Contractile Mechanisms in Muscle (edited by Pollack, G. H. & Sugi, H.), pp. 307–28. New York, Plenum Publishing Corp.

    Google Scholar 

  • MAIR, W. G. P. & TOME, F. M. S. (1972) The ultrastructure of the adult and developing human myotendinous junction. Acta Neuropath. (Berlin) 21, 239–52.

    Google Scholar 

  • MILLER, W. A. (1977) Rupture of the musculotendinous juncture of the medial head of the gastrocnemius muscle. Am. J. Sports Med. 5, 191–3.

    Google Scholar 

  • MUIR, A. R. (1967) The effects of divalent cations on the ultrastructure of the perfused rat heart. J. Anat. 101, 239–61.

    Google Scholar 

  • NAKAO, T. (1975) Fine structure of the myotendinous junction and ‘terminal coupling’ in the skeletal muscle of the lamprey, Lampetra japonica. Anat. Rec. 182, 321–38.

    Google Scholar 

  • NAKAO, T. (1976) Some observations on the fine structure of the myotendinous junction in myotoma muscles of the tadpole tail. Cell Tiss. Res. 166, 241–54.

    Google Scholar 

  • OAKES, B. W. (1984) Hamstring muscle injuries. Aust. Fam. Phys. 13, 587–91.

    Google Scholar 

  • PARDO, J. V., SILICIANO, J. D. & CRAIG, S. W. (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (‘costameres’) mark sites of attachment between myofibrils and sarcolemma. Proc. Natl. Acad. Sci. USA 80, 1008–12.

    Google Scholar 

  • PIEROBON-BORMIOLI, S. (1981) Transverse sarcomere filamentous systems: ‘Z- and M-cables’. J. Muscle Res. Cell Motil. 2, 401–13.

    Google Scholar 

  • PODOLSKY, R. J. (1964) The maximum sarcomere length for contraction of isolated myofibrils. J. Physiol. 170, 110–23.

    Google Scholar 

  • PYTELA, R., PIERSCHBACHER, M. D., ARGRAVES, S., SUZUKI, S. & RUOSLAHTI, E. (1987) Arginine-glycine-aspartic acid adhesion receptors. Method Enzymol. 144, 475–89.

    Google Scholar 

  • RAPOPORT, S. I. (1972) Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. J. Gen. Physiol. 59, 559–85.

    Google Scholar 

  • RAPOPORT, S. I. (1973) the anisotropic elastic properties of the sarcolemma of the frog semitendinosus muscle fiber. Biophys. J. 13, 14–36.

    Google Scholar 

  • REEDY, M. K., GOODY, R. S., HOFMANN, W. & ROSENBAUM, G. (1983) Co-ordinated electron microscopy and X-ray studies of glycerinated insect flight muscle. I. X-ray diffraction monitoring during preparation for electron microscopy of muscle fibres fixed in rigor, in ATP and in AMPPNP. J. Muscle Res. Cell Motil. 4, 25–53.

    Google Scholar 

  • REEDY, M. C., REEDY, M. K. & TREGEAR, R. T. (1988) Two attached non-rigor crossbridge forms in insect flight muscle. J. Mol. Biol. 204, 357–83.

    Google Scholar 

  • RUOSLAHTI, E. & PIERSCHBACHER, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491–7.

    Google Scholar 

  • SCHWARZACHER, H. G. (1960) Untersuchungen uber die skeletmuskel-sehnenverbindung. I. Elektronenmikroskopische und lichtmikroskopische untersuchungen uber den feinbau der muskelfaser-sehnenverbindung. Acta Anat. 40, 59–86.

    Google Scholar 

  • SHEAR, C. R. & BLOCH, R. J. (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J. Cell Biol. 101, 240–56.

    Google Scholar 

  • SINGER, I. I. (1982) Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts. J. Cell Biol. 92, 398–408.

    Google Scholar 

  • SINGER, I. I. & PARADISO, P. R. (1981) A transmembrane relationship between fibronectin and vinculin (130 kd protein): serum modulation in normal and transformed hamster fibroblasts. Cell 24, 481–92.

    Google Scholar 

  • SPRINGER, T. A., DUSTIN, M. L., KISHIMOTO, T. K. & MARLIN, S. D. (1987) The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Ann. Rev. Immunol. 5, 223–52.

    Google Scholar 

  • STREET, S. F. (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell. Physiol. 114, 346–64.

    Google Scholar 

  • STREET, S. F. & RAMSEY, R. W. (1965) The sarcolemma: transmitter of active tension in frog skeletal muscle. Science 149, 1379–80.

    Google Scholar 

  • SWASDISON, S. & MAYNE, R. (1989) Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res. 257, 537–43.

    Google Scholar 

  • TIDBALL, J. G. (1983) The geometry of actin filament-membrane associations can modify adhesive strength of the myotendinous junction. Cell Motil. 3, 439–47.

    Google Scholar 

  • TIDBALL, J. G. (1984) Myotendinous junction: morphological changes and mechanical failure associated with muscle cell atrophy. Exp. Mol. Path. 40, 1–12.

    Google Scholar 

  • TIDBALL, J. G. & CHAN, M. (1989) Adhesive strength of single muscle cells to basement membrane at myotendinous junctions. J. Appl. Physiol. 67, 1063–9.

    Google Scholar 

  • TOWBIN, H., STAEHELIN, T. & GORDON, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4.

    Google Scholar 

  • TROTTER, J. A., CORBETT, K. & AVNER, B. P. (1981) Structure and function of the murine muscle-tendon junction. Anat. Rec. 201, 293–302.

    Google Scholar 

  • TROTTER, J. A., EBERHARD, S. & SAMORA, A. (1983a) Structural domains of the muscle-tendon junction. I. The internal lamina and the connecting domain. Anat. Rec. 207, 573–91.

    Google Scholar 

  • TROTTER, J. A., EBERHARD, S. & SAMORA, A. (1983b) Structural connections of the muscle-tendon junction. Cell Motil. 3, 431–8.

    Google Scholar 

  • WAINWRIGHT, S. A., BIGGS, W. D., CURREY, J. D. & GOSLINE, J. M. (1976) Mechanical Design in Organisms. London: Edward Arnold.

    Google Scholar 

  • WALTER, W. G. (1944–48) The tensile strength of striated muscle, investigated on the gastrocnemius muscle of the frog. Arch. Neerl. Physiol. 28, 655–69.

    Google Scholar 

  • YOKOYAMA, H. O., JENNINGS, R. B. & WARTMAN, W. B. (1961) Intercalated discs of dog myocardium. Exp. Cell Res. 23, 29–44.

    Google Scholar 

  • YUNG, R. & FRANK, J. S. (1986) Extracellular matrix-sarcolemmal surface interconnections: a quick-freeze deep-etch study. J. Ultrastruct. Mol. Str. Res. 96, 160–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, D.J., Lightner, V.A. Divalent cation-dependent adhesion at the myotendinous junction: ultrastructure and mechanics of failure. J Muscle Res Cell Motil 14, 173–185 (1993). https://doi.org/10.1007/BF00115452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115452

Keywords

Navigation