Skip to main content
Log in

Colour polymorphism and genetic variation in Idotea baltica populations from the Adriatic Sea and Baltic Sea

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Phenotypic and genetic variation was studied in two of the four European subspecies of the marine isopod Idotea baltica; the Mediterranean I. b. basteri and the Baltic I. b. baltica. Spatial and temporal patterns of colour polymorphism were analysed in northern Adriatic and western Baltic Sea populations. Pronounced differences in phenotype composition were observed between populations of both subspecies as seen in the distribution of various colour variants bilineata, lineata, flavafusca and several combined forms). Compared with Adriatic samples, western Baltic Sea populations show higher phenotypic diversity. To obtain an estimate of the degree of genetic divergence between the subspecies, 12 gene-enzyme systems were investigated electrophoretically. The results obtained indicate a relatively high level of genetic variation; I. b. basteri from the nothern Adriatic tends to be more polymorphic and more heterozygous than I. b. baltica from the western Baltic. Both subspecies share identical electrophoretic mobilities of the homologous enzyme proteins examined; however, in allelic composition they exhibit significant differences at approximately half the number of loci scored. The genetic distance (Nei's D) measured at the subspecific level was 0.04. Amounts and geographical patterns of variation, observed both in colour phenotype and electrophoretic variation, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu-Grobois F. A. & Beardmore J. A., 1982. Genetic differentiation and speciation in the brine shrimp Artemia. In: Mechanism of speciation. Proceedings of a Symposium organised by the Accademia dei Lincei, Rome, 1981. Liss, New York. (In press).

    Google Scholar 

  • Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A. & Pérez-Salas S., 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.

    Google Scholar 

  • Ayala F. J., Tracey M. L., Barr L. G., McDonald J. F. & Pérez-Salas S., 1974. Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics 77: 343–384.

    Google Scholar 

  • Ayala F. J. & Valentine J. W., 1979. Genetic variability in the pelagic environment: A paradox. Ecology 60: 24–29.

    Google Scholar 

  • Battaglia B., Bisol P. M. & Fava G., 1978. Genetic variability in relation to the environment in some marine invertebrates. In: Marine Organisms. Genetics, ecology and evolution, eds B. Battaglia and J. A. Beardmore, Plenum Press, New York: 53–70.

    Google Scholar 

  • Beck M. L. & Price J. O., 1981. Genetic variation in the terrestrial isopod, Armadillidium vulgare. J. Hered. 72: 15–18.

    Google Scholar 

  • Brewer G. J., 1970. An introduction to isozyme technique. Academic Press, London, 186 pp.

    Google Scholar 

  • Bulnheim H.-P. & Scholl A., 1981. Genetic variation between geographic populations of the amphipods Gammarus zaddachi and G. salinus. Mar. Biol. 64: 105–115.

    Google Scholar 

  • Comaschi A. & Voltolina D., 1973. Hydrological data from the surface waters of the lagoon of Venice. Atti Ist. Veneto Sci. 131: 35–58.

    Google Scholar 

  • Fairbairn D. J. & Roff D. A., 1980. Testing genetic models of isozyme variability without breeding data: Can we depend on the x2? Can. J. Fish. Aquat. Sci. 37: 1149–1159.

    Google Scholar 

  • Franco P., 1962. Condizioni fisiche e chimiche delle aeque lagunari nel porto-canale di Malamocco. Arch. Oceanogr. Limnol. 12: 226–255.

    Google Scholar 

  • Gooch J. L., 1975. Mechanisms of evolution and population genetics. In: Marine Ecology. 2. Physiological mechanisms. Ed. O. Kinne. Wiley, London, pp. 349–409.

    Google Scholar 

  • Gooch J. L., 1977. Allozyme genetics of life cycle stages of brachyurans. Chesapeake Sci. 18: 284–289.

    Google Scholar 

  • Harris H. & Hopkinson D. A., 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam.

    Google Scholar 

  • Hedgecock D., Nelson K., Shleser R. A. & Tracey M. L., 1975. Biochemical genetics of lobsters (Homarus). II. Inheritance of allozymes in H. americanus. J. Heredity 66: 114–118.

    Google Scholar 

  • Kimura M. & Otha T., 1971. Protein polymorphism as a phase of molecular evolution. Nature, Lond. 229: 467–469.

    Google Scholar 

  • Koehn R. K., Milkman R. & Mitton J. B., 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30: 2–32.

    Google Scholar 

  • Koepcke H.-W., 1948. Über das Zeichnungsmuster einiger Idotea-Arten (Isopoda). Zool. Jb. (Physiol.) 61: 413–450.

    Google Scholar 

  • Legrand J.-J. & Legrand-Hamelin E., 1975. Determinisme de l'intersexualité et de la monogénie chez les Crustacés Isopodes. Pubbl. Staz. Zool. Napoli 39 (Suppl.): 443–461.

    Google Scholar 

  • Magaard L. & Reinheimer G., 1974. Meereskunde der Ostsee. Springer, Berlin, 145 pp.

    Google Scholar 

  • Mulley J. C. & Latter B. D. H., 1980. Genetic variation and evolutionary relationships within a group of thirteen species of penaeid prawns. Evolution 34: 904–916.

    Google Scholar 

  • Muus B. J., 1967. The fauna of Danish estuaries and lagoons. Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Medd. Danmarks Fisk. Hav. (Ny Ser.) 5: 1–316.

    Google Scholar 

  • Naylor E., 1955. The ecological distribution of British species of Idotea (Isopoda). J. Anim. Ecol. 24: 255–269.

    Google Scholar 

  • Nei M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nelson K. & Hedgecock D., 1980. Enzyme polymorphism and adaptive strategy in the decapod Crustacea. Am. Nat. 116: 238–280.

    Google Scholar 

  • Nemeth S. T. & Tracey M. L., 1979. Allozyme variability and relatedness in six crayfish species. J. Hered. 70: 37–43.

    Google Scholar 

  • Nevo E., 1978. Genetic variation in natural populations: Patterns and theory. Theor. Pop. Biol. 13: 121–177.

    Google Scholar 

  • Peabody E. B., 1939. Pigmentary responses in the isopod, Idothea. J. exp. Zool. 82: 47–83.

    Google Scholar 

  • Rasmussen E., 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11: 1–507.

    Google Scholar 

  • Redfield J. A., Hedgecock D., Nelson K. & Salini J. P., 1980. Low heterozygosity in tropical marine crustaceans of Australia and the trophic stability hypothesis. Mar. Biol. Letters 1, 303–313.

    Google Scholar 

  • Remane, A., 1931. Farbwechsel, Farbrassen und Farbanpassung bei der Meeresassel Idothea tricuspidata. Verh. Deutsch. Zool. Ges.: 109–114.

  • Salemaa H., 1978. Geographical variability in the colour polymorphism of Idotea baltica (Isopoda) in the northern Baltic. Hereditas 88: 165–182.

    Google Scholar 

  • Salemaa H., 1979a. Seasonal variability in the colour polymorphism of Idotea baltica (Isopoda) in the northern Baltic. Hereditas 90: 51–58.

    Google Scholar 

  • Salemaa H., 1979b. Ecology of Idotea spp. (Isopoda) in the northern Baltic. Ophelia 18: 133–150.

    Google Scholar 

  • Sassaman C., 1979. Genetics of the malate dehydrogenase isozymes of the isopod Porcellio scaber. J. exp. Zool. 210: 507–513.

    Google Scholar 

  • Sbordoni V., Caccone A., de Matthaeis E., & Sbordoni M. C., 1980. Biochemical divergence between cavernicolous and marine Sphaeromidae and the Mediterranean salinity crisis. Experientia 36: 48–49.

    Google Scholar 

  • Scholl A., Corzilius B., & Villwock W., 1978. Beitrag zur Verwandtschaftsanalyse altweltlicher Zahnkarpfen der Tribus Aphaniini (Pisces, Cyprinodontidae) mit Hilfe elektrophoretischer Untersuchungsmethoden. Z. zool. Syst. Evolutionsforsch. 16: 116–132.

    Google Scholar 

  • Sene F. M. & Carson H. L., 1977. Genetic variation in Hawaiian Drosophila. IV Allozymic similarity between D. silvestris and D. heteroneura from the island of Hawai. Genetics 86: 187–198.

    Google Scholar 

  • Steiner W. W. M., Lisowski E. A. & Osterbur D., 1977. Biochemical differences in sympatric color morphs of an aquatic isopod (Asellus brevicauda). Comp. Biochem. Physiol. 56 B: 371–374.

    Google Scholar 

  • Suneson S., 1947. Colour change and chromatophore activators in Idotea. K. fysiogr. Sällsk. Handl. N. F. 58: 1–34.

    Google Scholar 

  • Tinturier-Hamelin E., 1963a. Polychromatisme et détermination génétique du sexe chez l'espèce polytypique Idotea balthica (Pallas) (Isopode valyifere). Cah. Biol. mar. 4: 473–591.

    Google Scholar 

  • Tinturier-Hamelin E., 1963b. Définition et analyse génétique du phénotype pseudolineata de l'isopode valvifère Idotea balthica (Pallas). Crustaceana 5: 133–137.

    Google Scholar 

  • Workman P. L. & Niswander J. D., 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am. J. Hum. Genet. 22: 24–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buinheim, HP., Faya, G. Colour polymorphism and genetic variation in Idotea baltica populations from the Adriatic Sea and Baltic Sea. Genetica 59, 177–190 (1982). https://doi.org/10.1007/BF00056540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056540

Keywords

Navigation