Skip to main content
Log in

Genetic variability and divergence between populations and species of Nesticus cave spiders

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genetic variability and divergence at 21 enzyme loci were studied in and between Italian populations of the cave spiders Nesticus eremita (13 populations), N. menozzii and N. sbordonii (one population each). The three species differ with respect to the degree of specialization to cave life, dispersion ability, isolation of populations, abundancy, extent of the distribution area, and range from the troglophilic and widespread N. eremita to the troglobitic N. sbordonii, endemic to a single cave in the Central Appennines.

Heterozygosity ranges from 0.05 to 0.15 in N. eremita populations and appears to be largely controlled by the occurrence and the extent of gene flow among populations. The relatively low polymorphism levels of N. menozzii (H=0.081) and N. sbordonii (H=0.106) are also associated with reduced gene flow and small population sizes.

Genetic distances between N. eremita populations vary considerably and are strictly related to the geographical distances involved, again indicating a major role of gene flow in determining the patterns of genetic differentiation between populations. This view is strongly supported by the results of a principal component analysis applied to the gene-frequency data. Estimates of genetic divergence between species suggest that the major cladogenetic events leading to complete separation of these three Nesticus species occurred in the Middle-late Pliocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise, J. C., 1976. Genetic differentiation during speciation; p. 106–122. In: F. J., Ayala (ed), Molecular evolution. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Ayala, F. J., 1975. Genetic differentiation during the speciation process. Evolut. Biol. 8: 1–75.

    Google Scholar 

  • Ayala, F. J., Powell, J. R., Tracey, M. L., Mourão, C. A. & Pérez-Salas, S., 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.

    Google Scholar 

  • Bullini, L. & Sbordoni, V., 1980. Electrophoretic studies on gene-enzyme systems: microevolutionary processes and phylogenetic inference. Boll. Zool. 47 (suppl.): 95–112.

    Google Scholar 

  • Brewer, G. J., 1970. An introduction to isozyme techniques. Academic Press, New York.

    Google Scholar 

  • Brignoli, P. M., 1972. Catalogo dei ragni cavernicoli italiani. Quad. Speleologia Circolo Speleologico Romano 1: 5–211.

    Google Scholar 

  • Brignoli, P. M., 1979. Ragni d'Italia: 31. Specie Cavernicole nuove o interessanti. Quad. Mus. Speleologia V. Rivera 10: 3–48.

    Google Scholar 

  • Chakraborty, R. & Nei, M., 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347–356.

    Google Scholar 

  • Dickerson, R. E., 1974. The structure of cytochrome c and the rates of molecular evolution. J. molec. Evol. 3: 161–178.

    Google Scholar 

  • Kimura, M. & Crow, J. F., 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    Google Scholar 

  • Langley, C. H. & Fitch, W. M., 1974. An examination of the constancy of the rate of molecular evolution. J. mol. Evol. 3: 161–177.

    Google Scholar 

  • Levene, H., 1949. On a matching problem arising in genetics. A. math. Statist. 20: 91–94.

    Google Scholar 

  • Levins, R., 1968. Evolution in changing environments. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei, M., 1975. Molecular population genetics and evolution. North-Holland Publ. Comp. Amsterdam. Oxford.

    Google Scholar 

  • Nei, M., Maruyama, T. & Chakraborty, R., 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Orlóci, L., 1975. Multivariate analysis in vegetation research. Junk, The Hague.

    Google Scholar 

  • Ruffo, S., 1955. Le attuali conoscenze della fauna cavernicola della regione Pugliese. Memorie Biogeogr. adriat. 3: 1–143.

    Google Scholar 

  • Sarich, V. M., 1977. Rates, sample size and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265: 24–28.

    Google Scholar 

  • Sbordoni, V., 1980. Strategie adattative negli animali cavernicoli: uno studio di genetica ed ecologia di popolazione. Accad. naz. Lincei. Contrti Centro Linceo interdisciplinare Sci. matemat. Applic. 51: 61–100.

    Google Scholar 

  • Sbordoni, V., Allegrucci, G., Caccone, A., Cesaroni, D., Cobolli Sbordoni, M. & De, Matthaeis, E., 1980. A preliminary report of the genetic variability in troglobitic Bathysciinæ: Leptodirus hohenwarti and two Orostygia species (Coleoptera, Catopidae). Fragm. ent. 15: 327–336.

    Google Scholar 

  • Sbordoni, V., Allegrucci, G., Caccone, A., Cesaroni, D., Cobolli Sbordoni, M. & De, Matthaeis, E., 1981. Genetic variability and divergence in cave populations of Troglophilus cavicola and T. andreinii (Orthoptera, Rhaphidophoridae). Evolution 35: 226–233.

    Google Scholar 

  • Sbordoni, V., Caccone, A., De, Matthaeis, E. & Cobolli Sbordoni, M., 1980b. Biochemical divergence between cavernicolous and marine Sphaeromidae and the Mediterranean salinity crisis. Experientia 36: 48–49.

    Google Scholar 

  • Sbordoni, V., Cobolli Sbordoni, M. & De, Matthaeis, E., 1979. Divergenza genetica tra popolazioni e specie ipogee ed epigee di Niphargus (Crustacea, Amphipoda). Lav. Soc. Ital. Biogeogr. (n.s.) 6: 329–351.

    Google Scholar 

  • Schmitt, L. H., 1978. Genetic variation in isolated populations of the Australian bushrat. Rattus fuscipes. Evolution 32: 1–14.

    Google Scholar 

  • Selander, R. K. & Kaufman, D. W., 1973. Self-fertilization and genetic population structure in a colonizing land snail. Proc. natn. Acad. Sci. U.S.A. 70: 1186–1190.

    Google Scholar 

  • Sneath, P. H. A. & Sokal, R. R., 1973. Numerical taxonomy. The principles and practice of numerical classification. Freeman, San Francisco.

    Google Scholar 

  • Taylor, C. E. & Powell, J. R., 1977. Microgeographic differentiation of chromosomal and enzyme polymorphisms in D. persimilis. Genetics 85: 681–695.

    Google Scholar 

  • Valentine, J. W. & Ayala, F. J., 1978. Adaptive strategies in the sea; p. 323–345. In: B., Battaglia and J. A., Beardmore (eds), Marine organisms. Genetics, ecology and evolution. NATO Conferences series (4), 2. Plenum Press, New York.

    Google Scholar 

  • Zimmerman, E. G., Kilpatrick, C. W. & Hart, B. J., 1978. The genetics of speciation in the rodent genus Peromyscus. Evolution 32: 565–579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesaroni, D., Allegrucci, G., Caccone, A. et al. Genetic variability and divergence between populations and species of Nesticus cave spiders. Genetica 56, 81–92 (1981). https://doi.org/10.1007/BF00055410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055410

Keywords

Navigation