Skip to main content
Log in

Symmetries of distributions and quadrature of ordinary differential equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We present a geometric exposition of S. Lie's and E. Cartan's theory of explicit integration of finite-type (in particular, ordinary) differential equations. Numerous examples of how this theory works are given. In one of these, we propose a method of hunting for particular solutions of partial differential equations via symmetry preserving overdetermination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluman G. W. and Kumei S.: Symmetries and Differential Equations. Springer-Verlag, New York, 1989.

    Google Scholar 

  2. Cartan E.: Lecons sur les invariants intégraux, Hermann, Paris, 1922.

    Google Scholar 

  3. Cassidy P. J.: J. Algebra 121 (1989), 169–238.

    Google Scholar 

  4. Ibragimov N. H.: Transformation Groups Applied to Mathematical Physics, D. Reidel, Dordrecht, 1985.

    Google Scholar 

  5. Kamke E.: Differentialgleichungen. Lösungsmethoden und Lösungen: 1. Genwönliche Differentialgleichungen, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1961.

    Google Scholar 

  6. Kobayashi S. and Nomizu K.: Foundations of Differential Geometry, Interscience, New York, 1963.

    Google Scholar 

  7. Krasilshchik I. S., Lychagin V. V. Vinogradov A. M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.

    Google Scholar 

  8. Kolchin E. R.: Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.

    Google Scholar 

  9. Lie S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891.

    Google Scholar 

  10. Olver P.: Applications of Lie Groups to Differential Equations, Springer, New York, 1986.

    Google Scholar 

  11. Ovsiannikkov L. V.: Group Analysis of Differential Equations, Academic Press, New York, 1982.

    Google Scholar 

  12. Painlevé P.: Acta Math. 25 (1902), 1–85.

    Google Scholar 

  13. Pommaret J. F.: Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, Paris, 1978.

    Google Scholar 

  14. Pommaret J. F.: Differential Galois Theory, Gordon and Breach, New York, 1983.

    Google Scholar 

  15. Polischuk E. M.: Sophus Lie, Nauka, Leningrad, 1983 (in Russian).

    Google Scholar 

  16. Sherring J. and Prince G.: Geometric aspects of reduction of order, Research report, The University of New England, Australia, August 1990.

    Google Scholar 

  17. Stephani, H.: Differential Equations: Their Solution Using Symmetries, Cambridge University Press, 1989.

  18. Sternberg S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs, 1964.

    Google Scholar 

  19. Tsujishita, T.: Homological method of computing invariants of systems of differential equations, to appear in Diff. Geom. Appl. 1 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duzhin, S.V., Lychagin, V.V. Symmetries of distributions and quadrature of ordinary differential equations. Acta Appl Math 24, 29–57 (1991). https://doi.org/10.1007/BF00047361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047361

AMS subject classifications (1991)

Key words

Navigation