Skip to main content
Log in

Differential expression of U5snRNA gene variants in maize (Zea mays) protoplasts

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The small nuclear ribonucleoprotein particles U1, U2, U4/U6 and U5 participate in the removal of introns from pre-messenger RNAs in the nucleus. Three genes encoding U5snRNAs, the RNA moiety of U5snRNPs, have been isolated from maize. As in other plant UsnRNA gene families the three maize U5snRNA genes exhibit sequence variation. Two of the gene variants (MzU5.1 and MzU5.2) are clearly expressed after transfection into maize leaf protoplasts while the third gene variant (MzU5.3) is expressed at very low levels. These different levels of expression cannot be directly correlated with sequence changes in the highly conserved Upstream Sequence Element (USE) required for expression of Arabidopsis UsnRNA genes nor with differential stability of the U5snRNA transcripts. Further sequence elements may therefore have a role in regulating maize UsnRNA gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel S, Kiss T, Solymosy F: Molecular analysis of eight U1 RNA gene candidates from tomato that could potentially be transcribed into U1 RNA sequence variants differing from each other in similar regions of secondary structure. Nucl Acids Res 17: 6319–6337 (1989).

    PubMed  Google Scholar 

  2. Black DL, Pinto AL: U5 small nuclear ribonucleoprotein: RNA structure analysis and ATP dependent interaction with U4/U6. Mol Cell Biol 9: 3350–3359 (1989).

    PubMed  Google Scholar 

  3. Branlant C, Krol A, Lazar R, Haendler B, Jacob M, Galego-Dias L, Pousada C: High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5snRNA. Nucl Acids Res 11: 8359–8368 (1983).

    PubMed  Google Scholar 

  4. Brown JWS, Waugh R: Maize U2snRNAs: gene sequence and expression. Nucl Acids Res 17: 8359–8368 (1989).

    Google Scholar 

  5. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Turner DH: Improved free energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83: 9373–9377 (1986).

    PubMed  Google Scholar 

  6. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Article  PubMed  Google Scholar 

  7. Goodall GJ, Filipowicz W: Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10: 2635–2644 (1991).

    PubMed  Google Scholar 

  8. Goodall G, Wiebauer K, Filipowicz W: Analysis of pre-mRNA processing in transfected plant protoplasts. Meth Enzymol 181: 148–161 (1989).

    Google Scholar 

  9. Goodall J, Kiss Y, Filipowicz W: Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxford Surv Plant Mol Cell Biol 7: 255–296 (1989).

    Google Scholar 

  10. Guthrie C, Patterson B. Spliceosomal snRNAs. Annu Rev Genet 22: 387–419 (1989).

    Article  Google Scholar 

  11. Hanley BA, Schuler MA: Nucleotide sequence of a pea U2snRNA gene. Nucl Acids Res 17: 10106 (1989).

    PubMed  Google Scholar 

  12. Hanley BA, Schuler MA. Developmental expression of plant snRNAs. Nucl Acids Res 19: 5319–5325 (1990).

    Google Scholar 

  13. Horton RM, Cai Z, Ho SN, Pease LR: Gene splicing by overlap extensions: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528–535 (1990).

    PubMed  Google Scholar 

  14. Hu Y, Brown JWS, Waugh R, Turner PC: Cloning and characterisation of a U6 small nuclear RNA gene from potato. Biochim Biophys Acta 1129: 90–92 (1991).

    PubMed  Google Scholar 

  15. Keith B, Chua NH: Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5: 2419–2425 (1986).

    Google Scholar 

  16. Kiss T, Solymosy F: Molecular analysis of a U3snRNA gene locus in tomato: transcription signals, the coding region, expression in transgenic tobacco plants and tandemly repeated pseudogenes. Nucl Acids Res 18: 1941–1949 (1990).

    PubMed  Google Scholar 

  17. Kiss T, Marshallsay C, Filipowicz W: Alteration of the RNA polymerase specificity of U3snRNA genes during evolution and in vitro. Cell 65: 517–526 (1991).

    Article  PubMed  Google Scholar 

  18. Krol A, Ebel JP, Rinke J, Lührmann R: U1, U2 and U5 small nuclear RNAs are found in plant cells. Complete nucleotide sequence of the U5 RNA family from pea nuclei. Nucl Acids Res 11: 8583–8594 (1983).

    PubMed  Google Scholar 

  19. Marshallsay C, Kiss T, Filipowicz W. Nucleotide sequence and expression of a new Arabidopsis thaliana U2snRNA gene. Nucl Acids Res 18: 5280 (1990).

    PubMed  Google Scholar 

  20. Marshallsay C, Kiss T, Filipowicz W: Amplification of plant U3 and U6snRNA sequences using primers specific for an upatream promoter element and conserved intragenic regions. Nucl Acids Res 18: 3459–3456 (1990).

    PubMed  Google Scholar 

  21. Marshallsay C, Connelly S, Filipowicz W: Characterisation of the U3 and U6snRNA genes from wheat: U3snRNA genes in monocot plants are transcribed by RNA polymerase III. Plant Mol Biol 19: 973–983 (1992).

    PubMed  Google Scholar 

  22. Matera AG, Weiner AM, Schmid CW: Structure and evolution of the U2 small nuclear RNA multigene family in primates — Gene amplification under natural selection. Mol Cell Biol 10: 5876–5882 (1990).

    PubMed  Google Scholar 

  23. Mattaj IW: UsnRNP assembly and transport. In: Birnsteil ML (ed) Structure and Function of the Major and Minor Small Nuclear Ribonucleoprotein Particles, pp. 100–114. Springer-Verlag, Berlin/Heidelberg/New York (1988).

    Google Scholar 

  24. Melton DA, Kreig PA, Rebagliati MR, Maniatis T, Zinn J, Green MR: Efficient in vitro synthesis of biologically active RNA and RNA hybridisation probes from plasmids containing a bacteriophage SP6 promoter. Nucl Acids Res 12: 7035–7056 (1984).

    PubMed  Google Scholar 

  25. Palfi Z, Bach M, Solymosy F, Lührmann R: Purification of the major UsnRNPs from broad bean nuclear extracts and characterisation of their protein constituents. Nuc Acids Res 17: 1445–1458 (1989).

    Google Scholar 

  26. Patterson B, Guthrie C: An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49: 513–524 (1987).

    Article  Google Scholar 

  27. Reddy R, Busch H: Structure and function of the major and minor small nuclear ribonucleoprotein particles. In: Birnstiel ML (ed) Small Nuclear RNAs: RNA Sequences, Structure and Modifications, pp. 1–38. Springer-Verlag, Berlin/Heidelberg/New York (1988).

    Google Scholar 

  28. Steitz JA, Black DL, Gerke V, Parker KA, Krämer A, Frendewey D, Keller W: Small Nuclear RNAs: RNA Sequences, Structure and Modifications. In: Birnstiel ML (ed) Structure and Function of the Major and Minor Small Nuclear Ribonucleoprotein Particles, pp. 115–154. Springer-Verlag, Berlin/Heidelberg/New York (1988).

    Google Scholar 

  29. Szkukalek A, Kiss T, Solymosy F: The 5′ end of the coding region of a U6 RNA gene candidate from tomato starts with GUCC, a phylogenically highly conserved 5′ end sequence of U6 RNA. Nucl Acids Res 18: 1295 (1990).

    PubMed  Google Scholar 

  30. van Santen VL, Spritz RA: Nucleotide sequence of a bean (Phaseolus vulgaris) U1 small nuclear RNA gene: Implications for plant pre-mRNA splicing. Proc Natl Acad Sci USA 84: 9094–9098 (1987).

    PubMed  Google Scholar 

  31. van Santen VL, Swain W, Spritz RA: Nucleotide sequence of two soybean U1snRNA genes. Nucl Acids Res 16: 4176 (1988).

    PubMed  Google Scholar 

  32. Vankan P, Edoh D, Filipowicz W: Structure and expression of the U5snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant UsnRNA genes. Nucl Acids Res 16: 10425–10439 (1988).

    PubMed  Google Scholar 

  33. Vankan P, Filipowicz W: Structure of U2snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts. EMBO J 7: 791–799 (1988).

    Google Scholar 

  34. Vankan P, Filipowicz W: A UsnRNA gene-specific upstream element and a-30 ‘TATA Box’ are required for transcription of the U2snRNA gene of Arabidopsis thaliana. EMBO J 8: 3875–3882 (1989).

    PubMed  Google Scholar 

  35. Vaux P, Guerineau F, Waugh R, Brown JWS: Characterisation and expression of U1snRNA genes from potato. Plant Mol Biol 19: 959–971 (1992).

    PubMed  Google Scholar 

  36. Waibel F, Filipowicz W: RNA polymerase specificity of transcription of Arabidopsis UsnRNA genes determined by promoter element spacing. Nature 346: 199–202 (1990).

    PubMed  Google Scholar 

  37. Waibel F, Filipowicz W: U6snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed UsnRNA genes. Nucl Acids Res 18: 3459–3466 (1990).

    PubMed  Google Scholar 

  38. Waugh R, Clark G, Vaux P, Brown JWS: Sequence and expression of potato U2snRNA genes. Nucl Acids Res 19: 249–256 (1991).

    PubMed  Google Scholar 

  39. Waugh R, Clark G, Brown JWS: Sequence variation and linkage of potato U2snRNA-encoding genes established by PCR. Gene 107: 197–204 (1991).

    PubMed  Google Scholar 

  40. Zuker M, Stiegler P: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res 9: 133–148 (1981).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leader, D., Connelly, S., Filipowicz, W. et al. Differential expression of U5snRNA gene variants in maize (Zea mays) protoplasts. Plant Mol Biol 21, 133–143 (1993). https://doi.org/10.1007/BF00039624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039624

Key words

Navigation