Skip to main content
Log in

Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus

  • Short Communications
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Among the homeotic mutants with altered floral organs, two mutants of Arabidopsis thaliana, apetala3 and pistillata, and two mutants of Antirrhinum majus, deficiens and globosa, have a homeotic conversion of the floral organs in whorl 2 and 3, namely petals to sepals and stamens to carpels. We have isolated a homologue of the DEFICIENS gene from A. thaliana wild type and shown complete complementation of apetala3 mutation by introducing the isolated gene using Agrobacterium-mediated transformation. These results show that the APETALA3 is a homologue of DEFICIENS structurally and functionally. The 5′-upstream region of APETALA3 contains three SRE-like sequence, where MADS box-containing proteins are assumed to bind and regulate expression in tissue-and stage-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y: Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12: 7–11 (1992).

    Google Scholar 

  2. Bowman JL, Smyth DR, Meyerowitz EM: Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52 (1989).

    Google Scholar 

  3. Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20 (1991).

    Google Scholar 

  4. Chou PY, Fasman GD: Prediction of protein conformation. Biochemistry 13: 222–245 (1974).

    Google Scholar 

  5. Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37 (1991).

    Google Scholar 

  6. Dubois E, Bercy J, Descamps F, Messenguy F: Characterization of two new genes essential for vegetative growth in Saccharomyces cerevisiae: nucleotide sequence determination and chromosome mapping. Gene 55: 265–275 (1987).

    Google Scholar 

  7. Haughn GH, Sommerville CR: Genetic control of morphogenesis in Arabidopsis. Devel Genet 9: 73–89 (1988).

    Google Scholar 

  8. Hill JP, Lord EM: Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67: 2922–2936 (1989).

    Google Scholar 

  9. Huijser P, Klein J, Lönnig W-E, Meijer H, Saedler H, Sommer H: Bracteomania and inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239–1249 (1992).

    Google Scholar 

  10. Jack T, Brockmann LL, Meyerowitz EM: The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697 (1992).

    Google Scholar 

  11. Jack T, Fox GL, Meyerowitz EM: Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703–716 (1994).

    Google Scholar 

  12. Komaki MK, Okada K, Nishino E, Shimura Y: Isolation and Characterization of novel mutants of Arabidopsis thaliana defective in flower development. Development 104: 195–203 (1988).

    Google Scholar 

  13. Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW: AP2 gene determines the identity of Perianth Organs in flowers of Arabidopsis thaliana. Plant Cell 1: 1195–1208 (1989).

    Google Scholar 

  14. Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  15. Ma H, Yanofsky MF, Meyerowitz EM: AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Devel 5: 484–495 (1991).

    Google Scholar 

  16. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF: Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277 (1992).

    Google Scholar 

  17. Mueller CG, Nordheim A: A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation. EMBO J 10: 4219–4229 (1991).

    Google Scholar 

  18. Norman C, Runswick M, Pollock R, Treisman R: Isolation and properties of cDNA clones encoding SRF, a transription factor that binds to the c-fos serum response element. Cell 55: 989–1003 (1988).

    Google Scholar 

  19. Passmore S, Maine GT, Elble R, Christ C, Tye BK: A Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. J Mol Biol 204: 593–606 (1988).

    Google Scholar 

  20. Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifschitz E: The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1: 255–266 (1991).

    Google Scholar 

  21. Pollock R, Treisman R: Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Devel 5: 2327–2341 (1991).

    Google Scholar 

  22. Primig M, Winkler H, Ammerer G: The DNA binding and oligomerization domain of MCM 1 is sufficient for its interaction with other regulatory proteins. EMBO J 10: 4209–4218 (1991).

    Google Scholar 

  23. Sambrook J, Fritsch E, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  24. Schwarz-Sommer Z, Huijser P, Nacken W, Seadler H, Sommer H: Genetic control of flower development by homeotic genes in Antirrhinum majus, Science 250: 931–936 (1990).

    Google Scholar 

  25. Schwarz-Sommer Z, Hue I, Huijser P, Flor PJ, Hansen R, Tetens F, Lönnig W-E, Saedler H, Sommer H: Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11: 251–263 (1992).

    Google Scholar 

  26. Shiraishi H, Okada K, Shimura Y: Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J 4: 385–398 (1993).

    Google Scholar 

  27. Sommer H, Beltran J-P, Huijser P, Pape H, Lönnig W-E, Saedler H, Schwartz-Sommer Z: Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613 (1990).

    Google Scholar 

  28. Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig W-E, Saedler H, Sommer H, Schwartz-Sommer Z: GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11: 4693–4704 (1992).

    Google Scholar 

  29. Yanofsky MF, Ma H, Bowman JL, Drews JL, Feldmann KA, Meyerowitz EM: The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Yano, A., Shiraishi, H. et al. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus . Plant Mol Biol 26, 465–472 (1994). https://doi.org/10.1007/BF00039556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039556

Key words

Navigation