Skip to main content
Log in

Dissolved organic matter in Chascomús Pond (Argentina). Influence of calcium carbonate on humic acid concentration

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water chemistry of the Chascomús Pond (Province of Buenos Aires, Argentina) was studied during a year characterized by low precipitation. Supersaturation of calcium carbonate up to a calcite saturation index of about 20 in spring and summer was observed, together with a diminution of the concentration of dissolved organic matter, in particular humic substances (HS). These results suggested an adsorption between organic matter and calcium carbonate which should influence the growth of calcium carbonate crystals. A preferential removal of higher molecular weight HS was observed by gel permeation chromatography experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • APHA, 1985. Standard Methods for the Examination of Water and Wastes. American Public Health Association. Washington DC, 1268 pp.

    Google Scholar 

  • Chave, K. E., 1965. Carbonates: Association with Organic Matter in Surface Seawater. Science 148: 1723–1724.

    Google Scholar 

  • Conzonno, V. H. & A. Fernández Cirelli, 1987. Soluble Humic Substances from the affluents of Chascomús Pond (Argentina). Arch. Hydrobiol. 109: 305–314.

    Google Scholar 

  • Conzonno, V. H. & A. Fernández Cirelli, 1988. Soluble Humic Substances from Chascomús Pond (Argentina). Factors influencing distribution and dynamics. Arch. Hydrobiol. 111: 467–473.

    Google Scholar 

  • Conzonno, V. H. & E. F. Claverie, 1987/8. Phytoplankton primary production in Chascomús Pond, (Provincia de Buenos Aires, Argentina). Ecosur 14/15: 7–16.

    Google Scholar 

  • Conzonno, V. H. & E. F. Claverie, 1990. Chemical characteristics of the water of Chascomús Pond (Provincia de Buenos Aires, Argentina). Limnological implications. Rev. Brasil. Biol. 50: 15–21.

    Google Scholar 

  • De Haan, H. & T. De Boer, 1986. Geochemical aspects of aqueous iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol.: 661–672.

  • Effler, S. W. & C. T. Driscoll, 1985. Calcium chemistry and deposition in ionically enriched Onondaga Lake, New York. Envir. Sci. Tech. 19: 716–720.

    Google Scholar 

  • Golterman, H. L., 1971. Methods for chemicals analysis of freshwaters. IBP Handbook N° 8. Blackwell Scientific Publications, Oxford, 583 pp.

    Google Scholar 

  • Golterman, H. L. & F. A. Kouwe, 1980. Chemical budgets and nutrient pathways. In E. D. le Cren & R. H. McConnell (eds), I.B.P. 22: The functioning of freshwater systems. Cambridge University Press, Cambridge, 788 pp.

    Google Scholar 

  • Golterman, H. L. & M. L. Meyer, 1985. The geochemistry of two hard water rivers, the Rhine and the Rhone. Part 2. The apparent solubility of Calcium carbonate. Hydrobiologia 126: 11–19.

    Google Scholar 

  • Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformation in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.

    Google Scholar 

  • Küchler-Krischun, J. & J. Kleiner, 1990. Heterogeneously nucleated calcite precipitation in Lake Constance. A short time resolution study. Aquat. Sci. 52/2: 176–197.

    Google Scholar 

  • Murphy, T. P., K. J. Hall & T. Yesaki, 1983. Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 58–69.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1973. Interaction of yellow organic acids with calcium carbonate in freshwater. Limnol. Oceanogr. 18: 490–493.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1974. Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hardwater lake. Arch. Hydrobiol. 73: 14–30.

    Google Scholar 

  • Pantin, H. M., 1965. The effect of adsorption on the attainment of physical and chemical equilibrium in sediments. N.Z.J. Geol. Geophys. 8: 453–464.

    Google Scholar 

  • Reynolds, R. C., 1978. Polyphenol inhibition of calcite precipitation in Lake Powell. Limnol. Oceanogr. 23: 588–597.

    Google Scholar 

  • Ringuelet, R. A., A. Salibidn, E. F. Claverie & S. Ilhdro, 1967. Limnología química de las lagunas pampásicas (Provincia de Buenos Aires). Physis 74: 201–221.

    Google Scholar 

  • Stewart, J. A. & R. G. Wetzel, 1981a. Dissolved humic materials. Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.

    Google Scholar 

  • Stewart, J. A. & R. G. Wetzel, 1981b. Asymmetrical relationships between absorbance, fluorescence and dissolved organic carbon. Limnol. Oceanogr. 26: 590–597.

    Google Scholar 

  • Stewart, J. A. & R. G. Wetzel, 1982. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1970. Aquatic Chemistry. John Wiley & Sons, Inc. New York, 583 pp.

    Google Scholar 

  • Suess, E., 1970. Interaction of organic compounds with calcium carbonate-I. Association phenomena and geochemical implications. Geochim. Cosmochim. Acta 34: 157–168.

    Article  Google Scholar 

  • Thomthwaite, C. W., 1948. An approach toward a rational classification of climate. Geograph. Rev. 38: 55–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution N° 524, Instituto de Limnología ‘Dr Raúl A. Ringuelet’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conzonno, V.H., Cirelli, A.F. Dissolved organic matter in Chascomús Pond (Argentina). Influence of calcium carbonate on humic acid concentration. Hydrobiologia 297, 55–59 (1995). https://doi.org/10.1007/BF00033501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033501

Key words

Navigation