Skip to main content
Log in

Response of two species of amphibious stichaeoid fishes to temperature fluctuations in an intertidal habitat

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The temperature regime of the intertidal microhabitat of two species of co-existing amphibious stichaeoid fishes, Anoplarchus purpurescens and Pholis ornata, were compared with experimentally determined tolerances to elevated temperatures. Studies of the critical thermal maxima of the two species revealed only slight differences in temperature tolerance but exposure to a cycled pattern of high temperatures sharply differentiated the resistance times of the two species with P. ornata capable of tolerating greater cumulative exposure to thermal stress when administered in a cycled program of temperature fluctuations with peak temperature at 27 °C. While the experimentally determined temperature tolerances exceeded those measured in the field, the greater tolerance of P. ornata may facilitate habitation of intertidal mudflats during summer months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barton, M. G., 1978. Influence of temperature and salinity on the adaptation of Anoplarchus purpurescens and Pholis ornata to an intertidal habitat. Ph. D. Thesis, Oregon State Univ., Corvallis, 105 pp.

    Google Scholar 

  • Barton, M. G., 1982. Comparative distribution and habitat preferences of two species of stichaeoid fishes in Yaquina Bay, Oregon. J. exp. mar. Biol. Ecol. 59: 77–87.

    Article  Google Scholar 

  • Bayer, R. D., 1980. Shallow water intertidal ichthyofauna of the Yaquina Estuary, Oregon. Northwest Sci. 55: 182–193.

    Google Scholar 

  • Brown, J. H. & C. R. Feldmeth, 1971. Evolution in constant and fluctuating environments: thermal tolerances of desert pupfish (Cyprinodon). Evol. 25: 390–398.

    Google Scholar 

  • Dehart, D. A., 1974. Resistance of three freshwater fishes to fluctuating thermal environments. MS Thesis. Oregon State Univ., Corvallis. 82 p.

    Google Scholar 

  • Duman, J. G. & A. L. DeVries, 1974. The effects of temperature and photoperiod on antifreeze production in cold water fishes. J. Exp. Zool. 190: 89–98.

    PubMed  Google Scholar 

  • Feldmeth, C. R., E. A. Stone & J. H. Brown, 1974. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89: 39–44.

    Google Scholar 

  • Fry, F. E. J., 1967. Responses of Vertebrate poikilotherms to temperature. In: A. H. Rose (ed.), Thermobiology. Acad. Press, N.Y.: 375–409.

    Google Scholar 

  • Gonor, J. J., 1970. Oregon coastal marine animals, their environmental temperatures and man's impact. I n Man and Aquatic Communities, Semin. conducted by Wat. Resour. Res. Inst., Oregon State Univ., Limn.: 79–102.

  • Grossman, G. D., 1982. Dynamics and organization of a rocky intertidal fish assemblage: the persistence and resilience of taxocene structure. Am. Nat, 119: 611–637.

    Article  Google Scholar 

  • Heath, W. G., 1967. Ecological significance of temperature tolerance in Gulf of California shore fishes. J. Ariz. Acad. Sci. 4: 172–178.

    Google Scholar 

  • Nakamura, R., 1976a. Temperature and vertical distribution of two tidepool fishes (Oligocottus maculosus, O. snyderi). Copeia 1976(1): 143–151.

    Google Scholar 

  • Nakamura, R., 1976b. Experimental assessment of factors influencing microhabitat selection by the two tidepool fishes Oligocottus maculosus and O. snyderi. Mar. Biol. 37: 97–104.

    Google Scholar 

  • Otto, R. G., 1974. The effects of acclimation to cyclic thermal regimes on heat tolerance of the western mosquitofish. Trans. Am. Fish. Soc. 103: 331–335.

    Article  Google Scholar 

  • Paladino, F. V., J. R. Spotila, J. P. Schubauer & K. T. Kowalski, 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Can. Biol. 39(2): 115–122.

    Google Scholar 

  • Pearcy, W. C. & S. S. Myers, 1974. Larval fishes of Yaquina Bay, Oregon: A nursey ground for marine fishes. Fish. Bull. 72: 201–213.

    Google Scholar 

  • Schrode, J. B., K. E. Zerba & J. S. Stephens, Jr., 1982. Ecological significance of temperature tolerance and preference of some inshore California fishes. Trans. Am. Fish. Soc. III: 45–51.

    Article  Google Scholar 

  • Thompson, D. A. & C. E. Lehner, 1976. Resilience of a rocky intertidal fish community in a physically unstable environment. J. exp. mar. Biol. Ecol. 22: 1–29.

    Article  Google Scholar 

  • Vondracek, B., J. J. Cech, J. Longanecker & D. Longanecker, 1982. Effect of cycling and constant temperature on the respiratory metabolism of the Tahoe sucker, Catostomus tahoensis (Pisces: Catostomidae). Comp. Biochem. Physiol. 73A: 11–14.

    Article  Google Scholar 

  • Wolcott, T. G., 1973. Physiological ecology and intertidal zonation in limpets. (Acmaea): a critical look at ‘limiting factors’. Biol. Bull. 145: 389–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, M. Response of two species of amphibious stichaeoid fishes to temperature fluctuations in an intertidal habitat. Hydrobiologia 120, 151–157 (1985). https://doi.org/10.1007/BF00032136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032136

Keywords

Navigation