Skip to main content
Log in

Transport of hormones in the phloem of higher plants

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Evidence for the translocation of auxins, gibberellins, cytokinins and abscisic acid and some of its metabolites in the phloem is reviewed. Problems associated with collection of sieve tube exudates and analysis of samples are discussed as are some of the possible functions of the translocated hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen JRF and Baker DA (1980) Free tryptophan and indole-3-acetic acid in the leaves and vascular pathways of Ricinus communis. Planta 148: 69–74

    Google Scholar 

  2. Auclair JL (1963) Aphid feeding and nutrition. Ann Rev Entomol 8: 439–490

    Article  Google Scholar 

  3. Baker DA and Allen JRF (1988) Auxin transport in the vascular system. In: Kutacek M, Bandurski RS and Krekule J (eds) Physiology and Biochemistry of Auxins in Plants, pp 215–220. Academia Praha

  4. Barlow CA and McCully ME (1972) The ruby laser instrument for cutting the stylets of feeding aphids. Can J Zool 50: 1497–1498

    Google Scholar 

  5. Barlow CA and Randolph PA (1978) quality and quantity of plant sap available to the pea aphid. Ann Entomol Soc Am 71: 46–48

    Google Scholar 

  6. Bowen MR and Hoad GV (1968) Inhibitor content of phloem and xylem sap obtained from willows (Salix viminalis L.) entering dormancy. Planta 81: 64–70

    Google Scholar 

  7. Boysen-Jensen P (1948) Formation of galls by Mikiola fagi. Physiol Plant 1: 95–108

    Google Scholar 

  8. Brenner ML, Brun WA, Schussler J and Cheikh N (1985) Effects of endogenous and exogenous growth substances on development and yield of soybeans. In: Bopp M (ed) Plant Growth Substances 1985, pp. 380–386. Springer Verlag, Berlin

    Google Scholar 

  9. Chin TY and Lockhart JA (1965) Translocation of applied gibberellin in bean seedlings. Am J Bot 52: 828–833

    Google Scholar 

  10. Chino M, Hayashi H, Nakamura S, Oshima T, Turner H, Sabnis D, Borkovec V, Naker DA, Bonnemain JL and Delrot S, (1991) Phloem sap composition. In: Bonnemain JL, Delrot S, Lucas WJ and Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Presses Académiques, Nantes Cedex, France

    Google Scholar 

  11. Cleland CF (1972) The use of aphids in the search for the hormonal factors controlling flowering. In: Carr DJ (ed) Plant Growth Substances 1970, pp 753–757. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  12. Davies WJ, Tardieu F and Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104: 309–314

    PubMed  Google Scholar 

  13. Downing N and Unwin DM (1977) A new method for cutting the mouth parts of feeding aphids. Physiol Entomol 2: 275–277

    Google Scholar 

  14. Dunn JA (1960) The formation of galls by some species of Pemphigus (Homoptera, Aphididae). Marcellia 30: 155–167

    Google Scholar 

  15. Eschrich W (1968) Translokation radioactivmarkierter Indolyl-3-essigäure in siebröhren von Vicia faba. Planta 78: 144–157

    Google Scholar 

  16. Fellows RJ, Egli DB and Leggett JE (1978) A pod leakage technique for phloem translocation studies in soybean. Plant Physiol 62: 812–814

    Google Scholar 

  17. Fellows RJ and Zeevaart JAD (1983) Comparison of ethylenediaminetetraacetate-enhanced exudation from detached and translocation from attached bean leaves. Plant Physiol 71: 716–718

    Google Scholar 

  18. Fisher DB and Frame JM (1984) A guide to the use of the exuding-stylet technique in phloem physiology. Planta 161: 385–396

    Article  Google Scholar 

  19. Fukumorita T and Chino M (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23: 273–283

    Google Scholar 

  20. Girousse C, Bonnemain J-L, Delrot S and Bournoville R (1991) Sugar and amino acid composition of phloem sap of Medicago sativa: A comparative study of two collecting methods. Plant physiol Biochem 29: 41–48

    Google Scholar 

  21. Hall SM and Baker DA (1972) The chemical composition of Ricinus phloem exudate. Planta 106: 131–140

    Google Scholar 

  22. Hall SM and Medlow GC (1974) Identification of IAA in phloem and root pressure saps of Ricinus communis L. by mass spectrometry. Planta 119: 257–261

    Google Scholar 

  23. Hanson SD and Cohen JD (1985) A technique for collection of exudate from pea seedlings. Plant Physiol 78: 734–738

    PubMed  Google Scholar 

  24. Hein MB, Brenner ML and Brun WA (1984) Effects of pod removal on the transport and accumulation of abscisic acid and indole-3-acetic acid in soybean leaves. Plant Physiol 76: 955–958

    Google Scholar 

  25. Hoad GV (1967) (+)-Abscisin II, (+)-Dormin in phloem exudate of willow. Life Sci 6: 1113–1118

    Article  Google Scholar 

  26. Hoad GV (1973a) Effect of moisture stress on abscisic acid levels in Ricinus communis L., with particular reference to phloem exudate. Planta 113: 367–372

    Google Scholar 

  27. Hoad GV (1975) Effect of osmotic stress on abscisic acid levels in xylem sap of sunflower (Helianthus annuus L.). Planta 124: 25–29

    Google Scholar 

  28. Hoad GV (1978) Effects of water stress on abscisic acid levels in white lupin (Lupinus albus L.) fruits, leaves and phloem exudate. Planta 142: 287–290

    Google Scholar 

  29. Hoad GV (1980) A simple system for determining the phloem mobility of hormones using excised pods of lupin (Lupinus albus L.). Planta 150: 275–278

    Google Scholar 

  30. Hoad GV (1983) Transport of hormones in higher plants. In: Proceedings of Conference on ‘Mechanisms of Assimilate and Plant Growth Regulator Distribution’ Piestany, Czechoslovakia, 1981, pp 34–52

  31. Hoad GV and Gaskin P (1980) Abscisic acid and related compounds in phloem exudate of Yucca flaccida (Haw.) and coconut (Cocos nucifera L.) Planta 150: 347–348

    Google Scholar 

  32. Hoad GV, Hillman SK and Wareing PF (1971) Studies on the movement of indole auxins in willow (Salix viminalis L.). Planta 99: 73–88

    Google Scholar 

  33. Hoad GV and Readman JE (1989) Hormone transport in the phloem of white lupin (Lupinus albus L.). In: Proceedings of the Plant Growth Regulator Society of America, 16th Annual Meeting, Washington D.C. 1989. PGRSoc. of America, Boyce Thompson Institute, Ithaca, NY, pp 210–211

    Google Scholar 

  34. Hoad GV, Retamales JA and Whiteside RJ (1991) Identification of gibberellins in the phloem of higher plants. Proceedings of the Japanese Society for Chemical Regulation of Plants 1990; 26: 88–91

    Google Scholar 

  35. Hoad GV, Retamales JA, Whiteside RJ and Lewis M (1993) Phloem translocation of gibberellins in three species of higher plants. Plant Growth Reg 13: 85–88

    Google Scholar 

  36. Hocking PJ (1980) The composition of phloem exudate and xylem sap from tree tobacco. Ann Bot 45: 633–643

    Google Scholar 

  37. Hüber B (1937) Methoden, Ergebnisse und Probleme der neuen Baumphysiologie. Ber Deut Bot Ges 55: 46–62

    Google Scholar 

  38. Hüber B, Schmidt E and Jahnel H (1937) Untersuchungen über den Assimilatström I Mitteilung aus der sächsischen forstlichen Versuchsanstalt Tharandt, Abteilung für Botanik. Tharandter Forstl Jahrb 88: 1017–1050

    Google Scholar 

  39. Hussain A, Forest JMS and Dixon AFG (1973) Changes in growth regulator content of radish seedlings, Raphanus sativus, infected with the aphid Myzus persicae. Ann Appl Biol 75: 275–284

    Google Scholar 

  40. Hussain A, Forest JMS and Dixon AFG (1974) Sugars, organic acids, phenolic acids and plant growth regulator content of the honeydew of the aphid Myzus persicae and of its host plant Raphanus sativus. Ann Appl Biol 78: 65–73

    Google Scholar 

  41. Jackson MB (1993) Are plant hormones involved in root to shoot communication? Adv Bot Res 19: 103–187

    Google Scholar 

  42. Kawabe S, Fukumorita T and Chino M (1980) Collection of rice phloem sap from stylets of homopterous insect severed by YAG laser. Plant Cell Physiol 21: 1319–1327

    Google Scholar 

  43. Kennedy JS and Mittler TE (1953) A method for obtaining phloem sap via the mouth parts of aphids. Nature 171: 528

    PubMed  Google Scholar 

  44. King RW (1976) Implications for plant growth of the transport of regulatory compounds in phloem and xylem. In: Wardlaw IF and Passioura JB (eds) Transport and transfre processes in plants, pp 415–431. Academic Press, NY

    Google Scholar 

  45. King RW (1982) Abscisic acid in developing wheat grains and its relation to grain growth and maturation. Planta 132: 43–51

    Google Scholar 

  46. King RW and Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles bh chelating agents. Plant Physiol 53: 96–103

    Google Scholar 

  47. Kluge M, Reinhard E and Ziegler H (1964) Gibberellin-aktivität von siebröhrensäften. Naturwissenschaften 6: 145–146

    Google Scholar 

  48. Komor E, Liegl I and Schobert C (1993) Loading and translocation of various cytokinins in phloem and xylem of seedlings of Ricinus communis L. Planta 191: 252–255

    Article  Google Scholar 

  49. Kriedemann PE, Loveys BR, Possingham J and Satoh M (1976) Sink effects on stomatal physiology and photosynthesis. In: Wardlaw IF and Passioura JB (eds) Transport and transfer processes in plants, pp 401–414. Academic Press, NY

    Google Scholar 

  50. Lenton JR, Bowen MR and Saunders PF (1968) Detection of abscisic acid in the xylem sap of willow (Salix viminalis L.) bh gas-liquid chromatography. Nature 220: 86–87

    Google Scholar 

  51. Lepp NW and Peel AJ (1971) Patterns of translocation and metabolism of 14C-labelled IAA in the phloem of willow. Planta 96: 62–73

    Google Scholar 

  52. Loveys BR and Kriedemann PE (1974) Internal control of stomatal physiology and photosynthesis i. Stomatal regulation and associated changes in endogenous levels of abscisic acid and phaseic acids. Aust J Plant Physiol 1: 407–415

    Google Scholar 

  53. Maxwell FG and Painter RH (1962a) Auxins in the honeydew of Toxoptera graminis, Therioaphis maculata and Macrosiphum pisi, and their relation to degree of tolerance in host plants. Ann Entomol Soc Am 55: 229–233

    Google Scholar 

  54. Maxwell FG and Painter RH (1962b) Auxin content of extracts of host plants and honeydew of different biotypes of the corn leaf aphid Rhopalosiphum maidis (Fitch). J Kansas Entomol Soc 35: 219–233

    Google Scholar 

  55. Milburn JA (1970) Phloem exudate from castor bean: Induction by massage. Planta 95: 272–276

    Google Scholar 

  56. Mittler TE (1958) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin), II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J Exp Biol 35: 74–84

    Google Scholar 

  57. Morris DA and Kadir GO (1972) Pathways of auxin transport in the intact pea seedling (Pisum sativum L.) Planta 107: 171–182

    Google Scholar 

  58. Munns R (1990) Chemical signals moving from roots to shoots: the case against ABA. In: Davies WJ and Jeffcoat B (eds) Importance of root to shoot communication in the responses to environmental stress, Monograph 21, pp 703–708. British Society for Plant Growth Regulation, Bristol

    Google Scholar 

  59. Munns R and King RW (1988) Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Physiol 88: 703–708

    Google Scholar 

  60. Neales TF and McLeod AL (1991) Do leaves contribute to the abscisic acid present in the sap of ‘droughted’ sunflower plants. Plant Cell Environ 14: 979–986

    Google Scholar 

  61. Pate JS (1976) Nutrients and metabolites of fluids recovered from xylem and phloem: Significance in relation to long-distance transport in plants. In: Wardlaw IF and Passioura JB (eds) Transport and transfer processes in plants, pp 253–281. Academic Press, NY

    Google Scholar 

  62. Pate JS, Peoples MB and Atkins CA (1984) Spontaneous phloem bleeding from cryopunctured fruits of a ureideproducing legume. Plant Physiol 74: 499–505

    Google Scholar 

  63. Pate JS, Sharkey PS and Lewis OAM (1974) Phloem bleeding from legume fruits—A technique for study of fruit nutrition. Planta 120: 229–243

    Google Scholar 

  64. Phillips DA and Cleland CF (1972) Cytokoinin activity in the phloem sap of Xanthium strumarium L. Planta 102: 173–178

    Google Scholar 

  65. Purse J (1984) Phloem exudate of Perilla crispa and its effects on flowering of Perilla crispa shoot explants. J Exp Bot 35: 227–238

    Google Scholar 

  66. Raven JA (1983) Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Adv Ecol Res 13: 135–234

    Google Scholar 

  67. Readman JE (1983) Plant hormones and fruit development in Lupinus albus L. PhD thesis, University of Bristol. 353 p

  68. Richardson PT, Baker DA and Ho LC (1982) The chemical composition of cucurbit vascular exudates. J Exp Bot 33: 1239–1247

    Google Scholar 

  69. Schussler TL, Brenner ML and Brun WA (1984) Absisic acid and its relationship to seed filling in soybean. Plant Physiol 76: 301–306

    Google Scholar 

  70. Setter TL, Brun WA and Brenner ML (1981) Abscisic acid translocation and metabolism in soybeans following depodding and petiole girding treatments. Plant Physiol 67: 774–779

    Google Scholar 

  71. Sheldrake AR (1973) The production of hormones in higher plants. Biol Rev 48: 509–559

    Article  Google Scholar 

  72. Suzuki Y, Zhang Y-H, Murofushi N and Takeuchi Y (1993) Endogenous gibberellins in parasitic plants. XV International Botanical Congress. Abstract No. 4162 Yokohama, Japan

  73. Taylor JS, Thompson B, Pate JS, Atkins CA and Pharis RP (1990) Cytokinis in the phloem sap of white lupin (Lupinus albus L.). Plant Physiol 94: 1714–1720

    Google Scholar 

  74. Thorne JH and Rainbird RM (1983) An in vivo technique for the study of phloem unloading in seed coats of developing soybean seeds. Plant Physiol 72: 268–271

    Google Scholar 

  75. VanDie J and Tammes PML (1964) Studies on phloem exudation of Yucca flaccida Haw. II. The translocation of assimilates. Acta Bot Neerl 19: 16–23

    Google Scholar 

  76. VanDie J and Tammes PML (1975) Phloem exudation from monocotyledonous axes. In: Zimmermann MH and Milbum JA (eds) Encyclopedia of Plant Physiology NS Vol. 1 Transport in Plants. I Phloem Transport, pp 196–222. Springer-Verlag, Berlin

    Google Scholar 

  77. VanStaden J (1976) Occurrence of cytokinin glucoside in the leaves and honeydew of Salix babylonica. Physiol Plant 36: 225–228

    Google Scholar 

  78. VanStaden J and Brown NAC (1978) Changes in endogenous cytokinins of bark and buds of Salix babylonica as a result of stem girdling. Physiol Plant 43: 148–153

    Google Scholar 

  79. Veen H and Tammes PML (1971) Studies on phloem exudation from Yucca flaccida HAW. X. Translocation of indole-3-acetic acid. Acta Bot Beerl 20: 356–366

    Google Scholar 

  80. Vonk CR (1974) Studies on phloem exudation from Yucca flaccida Haw. XIII. Evidence for the occurrence of a cytokinin nucleotide in the exudate. Acta Bot Neerl 23: 541–548

    Google Scholar 

  81. Vonk CR (1976) Studies on phloem exudation from Yucca flaccida Haw. XIV. Metabolism of 8-14C-zeatin in an excised inflorescence stalk, in phloem exudate and in flower sap. Acta Bot Neerl 25: 153–166

    Google Scholar 

  82. Vonk CR (1978) Formation of cytokinin nucleotide in a detached inflorescence stalk and the occurrence of nucleotides in the phloem exudate from attached Yucca plants. Physiol Plant 44: 161–166

    Google Scholar 

  83. Vonk CR (1979) Origin of cytokinins transported in the phloem. Physiol Plant 46: 235–240

    Google Scholar 

  84. Wareing PF and Phillips IDJ (1970) The control of growth and differentiation in plants. Pergamon Press, Oxford, N.Y. 303 p

    Google Scholar 

  85. Weatherley PE, Peel AJ and Hill GP (1959) The physiology of the sieve tube. Preliminary experiments using aphid mouth parts. J Exp Bot 10: 1–16

    Google Scholar 

  86. Weiler EW and Zeigler H (1981) Determination of phytohormones in phloem exudate from tree species by radioimmunoassay. Planta 152: 168–170

    Google Scholar 

  87. Weinbull J, Ronquist F and Brishammer S (1990) Free amino acid composition of leaf exudates and phloem sap: A comparative study in oats and barley. Plant Physiol 92: 222–226

    Google Scholar 

  88. Wolf O, Jeschke WD and Hartung W (1989) Long distance transport of ABA in NaCl-treated intact Lupinus albus plants. Curr Trends Plant Biochem Physiol 8: 268

    Google Scholar 

  89. Wright STC (1969) An increase in the ‘Inhibitor-ß’ content of detached wheat leaves following a period of wilting. Planta 86: 272–276

    Google Scholar 

  90. Wright STC and Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224: 719

    Google Scholar 

  91. Zeevaat JAD (1977) Sites of abscisic acid synthesis and metabolism in Ricinus communis. Plant Physiol 59: 78–791

    Google Scholar 

  92. Zeevaart JAD and Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39: 439–473

    Article  Google Scholar 

  93. Ziegler H (1956) Untersuchungen über die leitung und sekretion der assimilate. Planta 47: 447–500

    Google Scholar 

  94. Zeigler H (1975) Nature of transported substances. In: Zimmermann MH and Milbum JA (eds) Encyclopedia of Plant Physiology NS Vol. 1 Transport in Plants, I Phloem Transport, pp 59–100. Springer-Verlag, Berlin

    Google Scholar 

  95. Zimmermann MH (1957) Translocation of organic substances in trees I. The nature of the sugars in the sieve tube exudate of trees. Plant Physiol 32: 288–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoad, G.V. Transport of hormones in the phloem of higher plants. Plant Growth Regul 16, 173–182 (1995). https://doi.org/10.1007/BF00029538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029538

Key words

Navigation