Skip to main content
Log in

The mechanism of photosynthetic water oxidation

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetie water oxidation is unique to plants and cyanobacteria, it occurs in thylakoid membranes. The components associated with this process include: a reaction center polypeptide, having a molecular weight (Mr) of 47–50 kilodaltons (kDa), containing a reaction center chlorophyll a labeled as P680, a plastoquinol(?)-electron donor Z, a primary electron acceptor pheophytin, and a quinone electron acceptor QA; three ‘extrinsic’ polypeptides having Mr of approximately 17 kDa, 23 kDa, and 33 kDa; and, in all likelihood, an approximately 34 kDa ‘intrinsic’ polypeptide associated with manganese (Mn) atoms. In addition, chloride and calcium ions appear to be essential components for water oxidation. Photons, absorbed by the so-called photosystem II, provide the necessary energy for the chemical oxidation-reduction at P680; the oxidized P680 (P680+), then, oxidizes Z, which then oxidizes the water-manganese system contained, perhaps, in a protein matrix. The oxidation of water, leading to O2 evolution and H+ release, requires four such independent acts, i.e., there is a charge accumulating device (the so-called S-states). In this minireview, we have presented our current understanding of the reaction center P680, the chemical nature of Z, a possible working model for water oxidation, and the possible roles of manganese atoms, chloride ions, and the various polypeptides, mentioned above. A comparison with cytochrome c oxidase, which is involved in the opposite process of the reduction of O2 to H2O, is stressed.

This minireview is a prelude to the several minireviews, scheduled to be published in the forthcoming issues of Photosynthesis Research, including those on photosystem II (by H.J. van Gorkom); polypeptides of the O2-evolving system (by D.F. Ghanotakis and C.F. Yocum); and the role of chloride in O2 evolution (by S. Izawa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renger G (1983) in: Biophysics (W Hoppe, W Lohmann, H Markl and H Ziegler, eds.), pp. 347–371, Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  2. Wikström M, Krab K and Saraste M (1981) Ann Rev Biochem 50, 623–655

    Google Scholar 

  3. Wydrzynski T (1982) in: Photosynthesis-Energy Conversion by Plants and Bacteria, Vol. I (Govindjee, ed.), pp. 469–506, Academic Press, New York

    Google Scholar 

  4. Govindjee and Govindjee R (1975) in: Bioenergetics of Photosynthesis (Govindjee ed.) pp. 1–50, Academic Press, New York

    Google Scholar 

  5. Parson WW and Ke B (1982) in: Photosynthetic Energy Conversion by Plants and Bacteria (Govindjee, ed) Vol. 1, pp 331–385, Academic Press, New York

    Google Scholar 

  6. Davis MS, Forman A and Fajer J (1979) Proc Natl Acad Sci USA 76, 4170–4179

    Google Scholar 

  7. denBlanken HJ, Hoff AJ, Jongenelis APJM and Diner BA (1983) FEBS Lett 157, 21–27

    Google Scholar 

  8. Butler WL, Magde D and Barens SJ (1983) Proc Natl Acad Sci USA 80, 7510–7514

    Google Scholar 

  9. Fajer J, Davis MS, Forman A, Klimov VV, Dolan E and Ke B (1980) J Am Chem Soc 102, 7143–7145

    Google Scholar 

  10. Evans MCW and Atkinson YE (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 55–62, Academic Press, Japan

    Google Scholar 

  11. Rutherford AW (1981) Biochem Biophys Res Commun 102, 1065–1070

    Google Scholar 

  12. Renger G, Koike Y, Yuasa M and Inoue Y (1983) FEBS Lett 163, 89–93

    Google Scholar 

  13. Eckert HJ and Renger G (1980) Photochem Photobiol 31, 501–511

    Google Scholar 

  14. Junge W and Witt HT (1968) Z Naturforsch 23 b, 244–254

    Google Scholar 

  15. Sun ASK and Sauer K (1971) Biochim Biophys Acta 234, 399–414

    Google Scholar 

  16. Ross RT, Anderson RJ and Hsiao TL (1976) Photochem Photobiol 24, 267–278

    Google Scholar 

  17. Yamagishi A and Katoh S (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 39–48, Academic Press, Japan

    Google Scholar 

  18. Nakatani HY (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 49–54, Academic Press, Japan

    Google Scholar 

  19. Eceles J and Honig B (1983) Proc Natl Acad Sci USA 80, 4959–4962

    Google Scholar 

  20. Overfield RE, Scherz A, Kaufmann KJ and Wasielewski (1983) J Am Chem Soc 105, 5747–5752

    Google Scholar 

  21. Siemlarezuk A, McIntosh AR, Ho TF, Stillman MJ, Roach KJ, Weedon AC, Bolton JR and Connolly JS (1983) J Am Chem Soc 105, 7224–7230

    Google Scholar 

  22. Moore TA, Ernst D, Mathis P, Mialocq JC, Chachaty C, Bensasson RV, Land EV, Doiui D, Liddell PA, Lehmann WR, Nemeth GA and Moore AL (1984) Nature 307, 630–632

    Google Scholar 

  23. Joliot P and Kok B (1975) in: Bioenergetics of Photosynthesis (Govindjee, ed), pp. 387–412, Academic Press, New York

    Google Scholar 

  24. Kok B, Forbush B and McGloin M (1970) Photochem Photobiol 11, 457–475

    Google Scholar 

  25. Vermaas WFJ, Renger G and Dohnt G (1984) Biochim Biophys Acta 704, 194–202

    Google Scholar 

  26. Lavorel J and Maison-Peteri B (1983) Physiol Veg 21, 509–517

    Google Scholar 

  27. Babcock GT, Blankenship RE and Sauer K (1976) FEBS Lett 61, 286–289

    Google Scholar 

  28. vanBest J and Mathis P (1978) Biochim Biophys Acta 503, 178–188

    Google Scholar 

  29. Brettel K and Witt HT (1983) Photobiochem Photobiophys 6, 253–260

    Google Scholar 

  30. Eckert HJ, Renger G and Witt HT (1984) FEBS Lett 167, 316–320

    Google Scholar 

  31. Ghanotakis DF, O'Malley PJ, Babcock GT and Yocum CF (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds) pp. 91–101, Academic Press Japan

    Google Scholar 

  32. Dekker JP, Brok M and vanGorkom HJ (1984) in: Advances in Photosynthesis Research (Sybesma C, ed) Vol. 1, pp. 171–174, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  33. Diner B and deVitry C (1984) in: Advances in Photosynthesis Research (Sybesma C, ed) Vol. 1, pp. 407–411, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  34. Weiss W and Renger G (1984) FEBS Lett, 169, 219–223

    Google Scholar 

  35. Swallow AJ (1982) in: Function of Quinones in Energy Conserving Systems (Trumpower B, ed) pp. 59–72, Academic Press, New York

    Google Scholar 

  36. Renger G and Voelker M (1982) FEBS Lett 149, 203–207

    Google Scholar 

  37. Förster V and Junge W (1984) in: Advances in Photosynthesis Research (Sybesma C. ed) Vol. 2, pp. 305–308, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  38. Conjeaud H and Mathis P (1980) Biochim Biophys Acta 590, 353–359

    Google Scholar 

  39. Gläser M, Wolff C and Renger G (1976) Z Naturforsch 31 c, 716–717

    Google Scholar 

  40. Yerkes CT, Babcock GT and Crofts AR (1983) FEBS Lett 158, 359–363

    Google Scholar 

  41. Casey JL and Sauer K (1984) Biophysic J 45, 217a

  42. Zimmerman JL and Rutherford AW (1984) Submitted to Biochim Biophys Acta

  43. Malmström BG (1982) Ann Rev Biochem 51, 21–59

    Google Scholar 

  44. Radmer R and Cheniae G (1977) in: Primary Processes of Photosynthesis (J Barber, ed) pp. 303–348, Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  45. Amesz J (1983) Biochim Biophys Acta 726, 1–12

    Google Scholar 

  46. Olson JM (1970) Science 168, 438–446

    Google Scholar 

  47. Renger G (1970) Z Naturforsch 25b, 966–970

    Google Scholar 

  48. Yocum CF, Yerkes CT, Blankenship RE, Sharp RR and Babcoek GT (1981) Proc Natl Acad Sci USA 78, 7507–7511

    Google Scholar 

  49. Barber J, Nakatani HY and Mansfield R (1981) Israel J Chem 21, 243–249

    Google Scholar 

  50. Yamamoto Y and Nishimura M (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 229–238, Academic Press Japan

    Google Scholar 

  51. Wydrzynski TJ and Sauer K (1980) Biochim Biophys Acta 589, 56–70

    Google Scholar 

  52. Kirby JA, Goodin DB, Wydrzynski TJ, Robertson AS and Klein MP (1981) J Am Chem Soc 103, 5537–5542

    Google Scholar 

  53. Govindjee and Wydrzynski (1981) in Photosynthesis Vol II (GAkoyunoglou, ed) pp. 293–306, Balaban International Science Services, Philadelphia

    Google Scholar 

  54. Khanna R, Rajan S, Govindjee and Gutowsky HS (1983) Biochim Biophys Acta 725, 10–18

    Google Scholar 

  55. Dismukes GC and Siderer Y (1981) Proc Natl Acad Sci USA 78, 274–278

    Google Scholar 

  56. Andreason LE, Hansson Ö and Vänngard T (1983) Chemica Scripta 21, 71–74

    Google Scholar 

  57. Brudvig GW, Casey JL and Sauer K (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds) pp. 159–164, Academic Press Japan

    Google Scholar 

  58. Saphon S and Crofts AR (1977) Z Naturforsch 32c, 617–626

    Google Scholar 

  59. Fowler CF (1977) Biochim Biophys Acta 462, 414–421

    Google Scholar 

  60. Förster V and Junge W (1984) in: Advances in Photosynthesis Research (Sybesma C, ed.) pp. 305–308, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  61. Junge W, Renger G and Ausländer W (1977) FEBS Lett 79, 155–159

    Google Scholar 

  62. Tiemann R, Renger G and Gräber P (1981) in: Proc 5th Int Congr on Photosynthesis (Akoyunoglou G, ed) Vol II, pp. 85–95, Balaban International Science Services, Philadelphia

    Google Scholar 

  63. Förster V, Hong YQ and Junge W (1981) Biochim Biophys Acta 638, 141–152

    Google Scholar 

  64. Brudvig GW, Beck WF and de Paula J (1984) Biophys J 45, 258a

  65. Renger G (1978) in: Photosynthetic Water Oxidation (H Metzner ed), pp. 229–248, Academic Press, London

    Google Scholar 

  66. Renger G (1977) FEBS Lett 81, 223–228

    Google Scholar 

  67. Govindjee, Wydrzynski and Marks SB (1977) in: Bioenergetics of Membranes (L Packer, G Papageorgiou and A Trebst, eds), pp. 305–316, Elsevier, North Holland Biomedical Press

  68. Renger G, Eckert HJ and Weiss W (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds) pp. 73–82, Academic Press, Japan

    Google Scholar 

  69. Renger G and Weiss W (1984) in: Advances in Photosynthesis Research, (C Sybesma, ed) Vol. 1, pp. 253–260, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  70. Bicker D, Bonaventura J and Bonaventura C (1982) Biochem 21, 2661–2666

    Google Scholar 

  71. Chance B, Kumar C, Rowers L and Ching YC (1983) Biophys J 44 358–363

    Google Scholar 

  72. Boska M and Sauer K (1984) Biochim Biophys Acta 765, 84–87

    Google Scholar 

  73. Coleman WM, Goehring PR, Tylor LT, Mason JG and Bogers RK (1979) J Am Chem Soc 101, 2311–2318

    Google Scholar 

  74. Okawa H, Nakamura M and Kida S (1982) Bull Chem Soc Jpn 65, 466–470

    Google Scholar 

  75. Dismukes GC, Ferris K and Watnick P (1982) Photobiochem Photobiophys 3, 243–256

    Google Scholar 

  76. Mathur P and Dismukes GC (1983) J Am Chem Soc 105, 7093–7098

    Google Scholar 

  77. Lynch MW, Hendrickson DN, Fitzgerald BJ and Pierport CG (1984) J Am Chem Soc 106, 2041–2049

    Google Scholar 

  78. Renger G, Bouges-Bocquet B and Delosme R (1973) Biochim Biophys Acta 292, 769–807

    Google Scholar 

  79. Frasch W and Cheniae G, GM (1980) Plant Physiol 65, 735–795

    Google Scholar 

  80. Briantais JM, Vernotte C, Lavergne J and Arntzen CJ (1977) Biochim Biophys Acta 461, 61–74

    Google Scholar 

  81. Bouges-Boquet (1980) Biochim Biophys Acta 594, 85–103

    Google Scholar 

  82. Rutherford WA, Renger G, Koike H and Inoue Y (1984) submitted to Biochim Biophys Acta

  83. Kobayashi Y, Inoue Y and Shibata K (1978) in: Photosynthetic Water Oxidation, (H Metzner, ed) pp. 157–170, Academic Press, London

    Google Scholar 

  84. Sonneveld A, Rademaker H and Duysons LMN (1979) Biochem Biophys Acta 548, 536–551

    Google Scholar 

  85. Moore GR and Williams RJP (1977) FEBS Letters 79, 229–232

    Google Scholar 

  86. Velthuys BR (1980) Ann Rev Plant Physiol 31, 545–567

    Google Scholar 

  87. Goldfield MG, Blumenfeld LA, Dimitrovski LG and Mikoyan VD (1981) Molekul Bol 14, 635–641 (English translation)

    Google Scholar 

  88. Lynch MW, Hendrickson DN, Fitzgerald BJ and Plerport CG (1981) J Am Chem Soc 103, 3961–3663

    Google Scholar 

  89. Gersten SW, Samuels GJ and Meyer TJ (1982) J Am Chem Soc 104, 4029–4030

    Google Scholar 

  90. Sadewasser DA and Dilley RA (1978) Biochim Biophys Acta 501, 208–216

    Google Scholar 

  91. Kusonoki M (1984) in Advances in Photosynthesis Research (C Sybesma, ed) Vol. 1, pp. 275–278, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  92. Mauzerall D and Chivvis A (1973) J Theor Biol 42, 387–395

    Google Scholar 

  93. Stemler A (1980) Biochim Biophys Acta 593, 103–112

    Google Scholar 

  94. Collman JP, Modadek T, Raybuck and Meunier B (1983) Proc Natl Acad USA 80, 7039–7091

    Google Scholar 

  95. Groves JT, Watanabe Y and McMurry TJ (1983) J Am Chem Soc 105, 4489–4490

    Google Scholar 

  96. Izawa S, Heath RL and Hind G (1969) Biochim Biophys Acta 180, 388–398

    Google Scholar 

  97. Izawa S, Muallem A and Ramaswamy NK (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 293–302. Academic Press, Japan

    Google Scholar 

  98. Govindjee, Baianu IC, Critehley C and Gutoswky HS (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp 303–315, Academic Press, Japan

    Google Scholar 

  99. Theg S, Jursinic P and Homan PH (1984) Biochim Biophys Acta, in press

  100. Itoh S, Yerkes CT, Koike H, Robinson HH and Crofts AR (1984) Biochim Biophys Acta, in press

  101. Critehley C, Baianu IC, Govindjee and Gutowsky HS (1982) Biochim Biophys Acta 682, 463–445

    Google Scholar 

  102. Baianu IC, Critchley C, Gotowsky HS and Govindjee (1984) Proc Natl Acad Sci USA 81, 3713–3717

    Google Scholar 

  103. Theg SM and Homann PH (1982) Biochim Biophys Acta 679, 221–234

    Google Scholar 

  104. Sandusky PO and Yocum CF (1983) FEBS Lett 162, 339–343

    Google Scholar 

  105. Stemler A (1982) in: Photosynthesis-Energy Conversion by Plants and Bacteria Vol 1 (Govindjee ed), pp 513–539, Academic Press, New York

    Google Scholar 

  106. Govindjee (1984) in: Advances in Photosynthesis Research (Sybesma C, ed) Vol. 1, pp. 227–238, Martinus Nijhoff/Dr W. Junk Publ. Dordrecht

    Google Scholar 

  107. Vermaas WFJ and Govindjee (1982) in: Photosynthesis-Development, Carbon Metabolism and Plant Productivity, Vol II (Govindjee, ed), pp 541–558, Academic Press, New York

    Google Scholar 

  108. Vermaas WFJ and Govindjee (1981) Proc Indian Natn Sci Acad B47, 581–605

    Google Scholar 

  109. Renger G and Weiss W (1983) Biochim Biophys Acta 722, 1–11

    Google Scholar 

  110. Sawyer DT, Bodin ME, Willis LA and Riechel TL (1976) Inorg Chem 15, 1538–1543

    Google Scholar 

  111. Andersson B, Åkerlund HE and Albertson PA (1977) FEBS Lett 77, 141–145

    Google Scholar 

  112. Berthold DA, Babcock GT and Yocum CF (1981) FEBS Lett 134, 231–234

    Google Scholar 

  113. Dunahay TG, Staehlin LA, Seibert M, Ogilvie PD and Berg SP (1984) Biochim Biophys Acta 764, 179–193

    Google Scholar 

  114. Åkerlund HE (1983) in: The Oxygen Evolving System in Photosynthetic (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp 201–208, Academic Press, Japan

    Google Scholar 

  115. Murata N, Miyao M and Kuwabara T (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp 213–222. Academic Press, Japan

    Google Scholar 

  116. Toyoshima Y, Akinori K, Fukukaka E and Imaoka A (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp 239–244. Academic Press, Japan

    Google Scholar 

  117. Renger G and Åkerlund HE (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), 209–212, Academic Press, Japan

    Google Scholar 

  118. Åkerlund HE, Renger G, Weiss W and Hagemann R (1984) Biochim Biophys Acta 765, 1–6

    Google Scholar 

  119. Andersson B, Critchley C, Ryrie IJ, Jansson C, Larsson C and Anderson JM (1984) FEBS Lett 168, 113–117

    Google Scholar 

  120. Larsson C, Jansson C, Ljungberg H, Akerlund HE and Andersson B (1984) in: Advances in Photosynthesis Research (C Sybesma, ed) Vol. 1, pp. 363–366, Martinus Nijhoff/Dr W. Junk Publishers. Dordrecht

    Google Scholar 

  121. Ono T and Inoue Y (1983) FEBS Lett 164, 255–260

    Google Scholar 

  122. Ono T and Inoue Y (1983) FEBS Lett 166, 381–384

    Google Scholar 

  123. Bishop NI (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K, eds), pp. 117–187, Academic Press, Japan

    Google Scholar 

  124. Bricker TM, Metz JG, Miles D and Sherman LA (1982) Biochim Biophys Acta 724, 447–455

    Google Scholar 

  125. Abramowicz DA, Raab TK and Dismukes GC (1984) Advances in Photosynthesis Research (C Sybesma, ed) Vol. 1, pp. 349–353, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

    Google Scholar 

  126. Ono T and Inoue Y (1984) FEBS Lett 168, 281–286

    Google Scholar 

  127. Renger G, Völker M and Weiss W (1984) Biochim Biophys Acta (766 41578)

  128. Piccioni R and Mauzerall D (1978) Biochim Biophys Acta 504, 384–397

    Google Scholar 

  129. Brand JJ, Mohanty P and Fork DC (1983) FEBS Lett 155, 120–124

    Google Scholar 

  130. Ono T and Inoue Y (1983) in: The Oxygen Evolving System in Photosynthesis (Inoue Y, Crofts AR, Govindjee, Murata N, Renger G and Satoh K eds), pp 337–344, Academic Press, Japan

    Google Scholar 

  131. Ghanotakis DF, Babcock GT and Yocum CF (1984) FEBS Lett 167, 127–130

    Google Scholar 

  132. Packham NK and Barber J (1984) Biochim Biophys Acta 764, 17–23

    Google Scholar 

  133. Miyao M and Murata N (1984) FEBS Lett 168, 118–120

    Google Scholar 

  134. Nakatani HY (1984) Biochem Biophys Res Commun 120, 299–304

    Google Scholar 

  135. Ono T and Inoue Y (1984) FEBS Lett 166, 381–384

    Google Scholar 

  136. Winter DB, Bruyninckx WJ, Foulke FG, Grinich NP and Mason HS (1980) J Biol Chem 225, 11408–11414

    Google Scholar 

  137. Kadenback M (1983) Angew Chem 95, 273–281

    Google Scholar 

  138. Ley AC, Babcock CT and Sauer K (1975) Biochim Biophys Acta 387, 379–387

    Google Scholar 

  139. Jursinic P and Govindjee (1977) Photochem Photobiol 26, 617–628

    Google Scholar 

  140. Widger WR, Cramer WA, Hermodson M, Gullifor M, Meyer D, Farchaus J and Liedtke B (1983) in: The Oxygen Evolving System of Photosynthesis (Y Inoue, AR Crofts, Govindjee, N Maruta, G Renger and K Satoh, eds). pp. 123–134, Academic Press, Japan

    Google Scholar 

  141. Butler W and Matsuda H (1983) in: The Oxygen Evolving System of Photosynthesis (YInoue, ARCrofts, Govindjee, NMurata, GRender and KSatoh, eds), pp 113–122, Academic Press, Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benger, G., Govindjee The mechanism of photosynthetic water oxidation. Photosynth Res 6, 33–55 (1985). https://doi.org/10.1007/BF00029045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029045

Key words

Navigation