Skip to main content
Log in

Stochastic models that predict trout population density or biomass on a mesohabitat scale

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Neural networks and multiple linear regression models of the abundance of brown trout (Salmo trutta L.) on the mesohabitat scale were developed from combinations of physical habitat variables in 220 channel morphodynamic units (pools, riffles, runs, etc.) of 11 different streams in the central Pyrenean mountains. For all the 220 morphodynamic units, the determination coefficients obtained between the estimated and observed values of density or biomass were significantly higher for the neural network (r 2 adjusted= 0.93 and r 2 adjusted=0.92 (p<0.01) for biomass and density respectively with the neural network, against r 2 adjusted=0.69 (p<0.01) and r 2 adjusted = 0.54 (p<0.01) with multiple linear regression). Validation of the multivariate models and learning of the neural network developed from 165 randomly chosen channel morphodynamic units, was tested on the 55 other channel morphodynamic units. This showed that the biomass and density estimated by both methods were significantly related to the observed biomass and density. Determination coefficients were significantly higher for the neural network (r 2 adjusted =0.72 (p<0.01) and 0.81 (p<0.01) for biomass and density respectively) than for the multiple regression model (r 2 adjusted=0.59 and r 2 adjusted=0.37 for biomass and density respectively). The present study shows the advantages of the backpropagation procedure with neural networks over multiple linear regression analysis, at least in the field of stochastic salmonid ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albiol, J., C. Campmajo & M. Poch, 1995. Biomass estimation in plant cell cultures: a neural network approach. Biotechnol. Prog. 11: 88–92.

    Article  CAS  Google Scholar 

  • Baran, P., F Dauba, M. Delacoste & J. M. Lascaux, 1993a. Essais d'évaluation quantitative du potentiel halieutique d'une rivière à Salmonidés à partir des données de l'habitat physique. In D. Gascuel, P. Durand & M. Fonteneau, Les recherches françaises en evaluation quantitatives et modélisation des ressources et systèmes halieutiques, Editions de l'ORSTOM, Colloque et Séminaire, Paris: 15–38.

  • Baran, P., M. Delacoste, J. M. Lascaux & A. Belaud, 1993b. Relations entre les caracteristiques de l'habitat et les populations de truites communes (Salmo trutta L.) de la vallée de la Neste d'Aure. Bull. Fr. Peche Piscic. 331: 321–340.

    Article  Google Scholar 

  • Baran, P., M. Delacoste, G. Poizat, J. M. Lascaux, S. Lek & A. Belaud, 1995. Approche multi-échelles des relations entre les caractéristiques d'habitat et les populations de truite commune (Salmo trutta L.) dans les Pyrénées centrales. Bull. Fr. Peche Piscic. 337: 399–406.

    Article  Google Scholar 

  • Binns, N. A. & F. M. Eiserman, 1979. Quantification of fluvial trout habitat in Wyoming. Trans. am. Fish. Soc. 108: 215–228.

    Article  Google Scholar 

  • Bovee, K. D.,1982. A guide to stream habitat analysis using instream flow incremental methodology. Instream Flow Information Paper n° 12, FWS/OBS 82/86, 248 pp.

  • Cai, Y., 1995. Artificial neural network method for soil erosion forecasting. J. landwirtsch. Forsch. 46: 19–24.

    Google Scholar 

  • Carpenter, G. A., 1989. Neural network models for pattern recognition and associative memory. Neural Networks 2: 243–257.

    Article  Google Scholar 

  • Chen, S., S. A. Billings & P. M. Grant, 1990. Non-linear system identification using neural networks. Int. J. Control 51: 1191–1214.

    Article  Google Scholar 

  • Clark, R. D., G. R. Alexander & H. Gowing, 1980. Mathematical description of trout-stream fisheries. Trans. am. Fish. Soc. 109: 587–601.

    Article  Google Scholar 

  • Colasanti, R. L., 1991. Discussions of the possible use of neural network algorithms in ecological modelling. Binary 3: 13–15.

    Google Scholar 

  • D'Angelo, D. J., L. M. Howard, J. L. Meyer, S. V. Gregory & L. R. Ashkenas, 1995. Ecological uses for genetic algorithms: predicting fish distributions in complex physical habitats. Can. J. Fish. aquat. Sci 52: 1893–1908.

    Article  Google Scholar 

  • De Lury D. B., 1951. On the planning of experiments for the estimation of fish populations. J. Fish. Res. Bd Can. 18: 281–307.

    Google Scholar 

  • Delacoste, M., P. Baran, J. M. Lascaux & S. Lek, 1995. Classification et clé de détermination des faciès d'écoulement en rivière de montagne. Bull. Fr. Peche Piscic. 337: 149–156.

    Article  Google Scholar 

  • Dimopoulos, I., S. Lek & J. Lauga, 1996. Modélisation de la relation pluie-débit par les réseaux connexionnistes et le filtre de Kalman. Hydrol. Scis J. 41: 179–193.

    Article  Google Scholar 

  • Edwards, M. & D. R. Morse, 1995. The potential for computer-aided identification in biodiversity research. TREE 10: 153–158.

    CAS  PubMed  Google Scholar 

  • Fausch, K. D., C. L. Hawkes & M. G. Parsons, 1988. Models that predict the standing crop of stream fish from habitat variables. U.S. Forest Service General Technical Report PNW-GTR. 213 pp.

  • Haury, J., D. Ombredane & J. L. Bagliniere, 1991. L'habitat de la truite commune (Salmo trutta L.) en eaux courantes. In J. L. Baglinière & G. Maisse, La truite, biologie et écologie. INRA Publ., Paris: 25–46.

    Google Scholar 

  • Heggenes, J., 1988. Physical habitat selection by brown trout (Salmo trutta) in riverine systems. Nordic. J. Freshwat. 64: 74–90.

    Google Scholar 

  • Hornik, K., M. Stinchcombe & H. White, 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2: 359–366.

    Article  Google Scholar 

  • Jowett, I. G., 1992. Models of the abundance of large brown trout in New Zealand rivers. North Am. J. Fish. Mgmt 12: 417–432.

    Article  Google Scholar 

  • Jowett, I. G., 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand J. Mar. Freshwat. Res. 27: 241–248.

    Article  Google Scholar 

  • Laurent, M. & P. Lamarque, 1975. Utilisation de la méthode des captures successives (De Lury) pour l'évaluation des peuplements piscicoles. Bull. Fr. Pêche Piscic. 259: 66–67.

    Article  Google Scholar 

  • Lek, S., A. Belaud, I. Dimopoulos, J. Lauga & J. Moreau, 1995. Improved estimation, using neural networks, of the food consumption of fish populations. Aust. J. Mar. Freshwater Res. 46: 1229–1236.

    Article  Google Scholar 

  • Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga & S. Aulagnier, 1996. Application of neural networks to modelling non-linear relationships in ecology. Ecol. Model 90: 39–52.

    Article  Google Scholar 

  • Lewis, S. L., 1969. Physical factors influencing fish populations in pool of a trout stream. Trans. am. Fish. Soc. 115: 183–195.

    Article  Google Scholar 

  • Malavoi, J. R., 1989. Typologie des faciès d'écoulement ou unités morpho-dynamiques d'un cours d'eau à haute énergie. Bull. Fr. Peche Piscic. 315: 189–210.

    Article  Google Scholar 

  • Nehring, R. B. & R. M. Anderson, 1993. Determination of population-limiting critical salmonid habitats in colorado streams using physical habitat simulation system. Rivers 4: 1–19.

    Google Scholar 

  • Newcombe, C. P., 1981. A procedure to estimate changes in fish populations caused by changes in stream discharge. Trans. am. Fish. Soc. 110: 382–390.

    Article  Google Scholar 

  • Orth, D. J., 1987. Ecological considerations in the development and application of instream flow-habitat models. Regulated Rivers: Research & Management. 1: 171–181.

    Article  Google Scholar 

  • Platts, W. S. & R. L. Nelson, 1988. Fluctuations in trout populations and their implications for land-use evaluation. North. am. J. Fish. Mgmt 8: 333–345.

    Article  Google Scholar 

  • Raman, H. & N. Sunilkumar, 1995. Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Scis J. 40: 145–163.

    Article  Google Scholar 

  • Rumelhart, D. E., G. E. Hinton & R. J. Williams, 1986. Learning representations by back-propagating error. Nature 323: 533–536.

    Article  Google Scholar 

  • Seginer, I., T. Boulard & B. J. Bailey, 1994. Neural network models of the greenhouse climate. J. agric. Engineer. Res. 59: 203–216.

    Article  Google Scholar 

  • Specht, D. F., 1991. A general regression neural network. IEEE Trans. on Neural Networks 2: 568–576.

    Article  CAS  Google Scholar 

  • Ter braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • Tomassone, R., E. Lesquoy & C. Millier, 1983. La régression, nouveaux regards sur une ancienne méthode statistique. INRA actualités scientifiques et agnomiques, 13, Masson, Paris: 177 pp.

    Google Scholar 

  • Weigend, A. S., B. A. Huberman & D. E. Rumelhart, 1992. Predicting sunspots and exchange rates with connectionist networks. In Nonlineal Modelling and Forecasting, SFI Studies in the Sciences of Complexity, Proc. vol XII (eds) M. Casdagli & S. Eubank, Addison-Wesley: 395–432.

  • Weisberg, S., 1980. Applied linear regression. John Wiley & Sons, New York: 324 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, P., Lek, S., Delacoste, M. et al. Stochastic models that predict trout population density or biomass on a mesohabitat scale. Hydrobiologia 337, 1–9 (1996). https://doi.org/10.1007/BF00028502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028502

Key words

Navigation