Skip to main content
Log in

Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Elmenteita (0°27′S, 36°15′E) lies on the floor of the rift valley at 1776 m above sea level in Kenya. As a consequence of lower than average rainfall, the mean depth decreased from 1.1 to 0.65 m during the study period (February 1973 to August 1974). The initiation of major biological changes coincided with a period of rapid evaporative concentration in 1973 (February to April) when the conductivity increased from 19.1 to 27.0 mmhmos cm-1. Spirulina platensis, Spirulina laxissima and Anabaenopsis arnoldii decreased in abundance precipitously in parallel with large declines in chlorophyll a concentration and phytoplankton photosynthetic rates. Once the overall abundance of phytoplankton had declined and the transparency had increased, primary productivity by benthic algae increased significantly. Paradiaptomus africanus, the only copepod living in the lake, was abundant in February and March 1973, but was gone by May. Eight hypotheses to explain these changes are evaluated and converge on the suggestion that a rate of change of salinity greater than 5 mmhmos cm-1 per month and a salinity exceeding 25 mmhmos cm-1 cannot be tolerated by P. africanus and adversely effects the nitrogen fixer, A. arnoldii. Furthermore, the loss of P. africanus and oxygenation of the sediments by benthic algae reduce the rate of recyling of nutrients which alters phytoplankton abundance and species composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich, A. & M. Shilo, 1972. Photooxidative death in blue-green algae. J. Bact. 111: 682–689.

    Google Scholar 

  • Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch. Hydrobiol. 74: 528–550.

    Google Scholar 

  • Bachmann, H., 1938. Beitrage zur Kenntnis des Phytoplankton Ostafrikanischen Seen. Mission Scientific de'l'Omo. Schweiz. Z. Hydrobiol. 8: 119–140.

    Google Scholar 

  • Beadle, L. C., 1981. The inland waters of tropical Africa. Longman, London. 475 pp

    Google Scholar 

  • Bourrelly, P., 1970. Les algues d'eau douce. 3. Algues bleues et rouges. Boubee. 512 pp.

  • Cholnoky, B. J., 1960. Beiträge zur Kenntnis der Diatomeenflora von Natal (Südafrika). Nova Hedwigia 2: 1–128.

    Google Scholar 

  • Desikachary, T. V., 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi. 680 pp.

    Google Scholar 

  • Dosier, B. J. & P. J. Richerson, 1975. An improved membrane filter method for the enumeration of phytoplankton. Verh. int. Ver. Limnol. 19: 1524–1529.

    Google Scholar 

  • East African Meteorological Department, 1964. Climatological statistics for East Africa and Seychelles. Part I. Kenya and Seychelles. East African Common Services Organization, Nairobi. 78 pp.

    Google Scholar 

  • Ellis, J. & S. Kanamori, 1973. An evaluation of the Miller method for dissolved oxygen analysis. Limnol. Oceanogr. 18: 1002–1005.

    Google Scholar 

  • Eugster, H. P. & L. A. Hardie, 1978. Saline lakes. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer Verlag, New York: 237–293.

    Google Scholar 

  • Fisher, R. A., 1934. Statistical methods for research workers. Oliver and Boyd, Edinburgh. 319 pp.

    Google Scholar 

  • Fitzgerald, G. P., 1970. Aerobic lake muds for removal of phosphorus from lake waters. Limnol. Oceanogr. 15: 550–555.

    Google Scholar 

  • Ganf, G. G. & A. B. Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proc. R. Soc. B. 184: 321–346.

    Google Scholar 

  • Ganf, G. G. & P. Blazka, 1974. Oxygen uptake, ammonia and phosphate excretion by zooplankton of a shallow equatorial lake (Lake George, Uganda). Limnol. Oceanogr. 19: 313–325.

    Google Scholar 

  • Geitler, L., 1932. Cyanophyceae. In Dr. L. Rabenhorst's Kryptogamen Flora von Deutschland, Österreich and der Schweiz. Akademische Verlagsgesellschaft m.b.H., Leipzig. 14: 1–1196.

  • Golterman, H. L. (ed.), 1969. Methods for chemical analysis of fresh waters. International Biological Program Handbook No. 8. Blackwell Scientific Publications, Oxford. 166 pp.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol. Oceanogr. 18: 53–71.

    Google Scholar 

  • Holdship, S. A., 1976. The paleolimnology of Lake Manyara: a diatom analysis of a 56 m core. Ph.D. Thesis, Duke Univ., Durham (N.C.). 121 pp.

    Google Scholar 

  • Hustedt, F., 1930. Bacillariophyta (Die Süsswasser-flora Mitteleuropas, vol. X). G. Fisher, Jena. 466 pp.

    Google Scholar 

  • Hustedt, F., 1949. Süsswasser-Diatomeen. Exploration du Parc National Albert. Mission H. Damas (1935–36). Bruxelles, Inst. des Parcs Nat. du Congo Belge. Fasc. 8 199 p.

    Google Scholar 

  • Iltis, A., 1968. Tolérance de salinité de Spirulina platensis (Gom.) Geitl., (Cyanophyta) dans les mares natronées du Kanem (Tchad). Cah. O.R.ST.O.M., sér. Hydrobiol. 2: 119–125.

    Google Scholar 

  • Iltis, A., 1969. Phytoplancton des eaux natronées du Kanem (Tchad). I. Les lacs permanents a Spirulines. Cah. O.R.ST.O.M., sér. Hydrobiol. 3: 29–44.

    Google Scholar 

  • Kalff, J., 1983. Phosphorus limitation in some tropical African lakes. Hydrobiologia 100: 101–112.

    Google Scholar 

  • LaBarbera, M. C. & P. Kilham, 1974. The chemical ecology of copepod distribution in the lakes of East and Central Africa. Limnol. Oceanogr. 19: 459–465.

    Google Scholar 

  • Livingstone, D. A. & J. M. Melack, 1984. Some lakes of subsaharan Africa. In F. B. Taub (ed.), Lakes and Reservoirs. Elsevier Science Publ. B.V., Amsterdam: 467–497.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Mason, D. T., 1967. Limnology of Mono Lake, California. Univ. Calif. Publ. Zool. 83: 1–110.

    Google Scholar 

  • Melack, J. M., 1976. Limnology and dynamics of phytoplankton in equatorial African lakes. Ph.D. Thesis. Duke Univ., Durham (N.C.). 453 pp.

    Google Scholar 

  • Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • Melack, J. M. & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743–755.

    Google Scholar 

  • Melack, J. M., P. Kilham & T. R. Fisher, 1982. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52: 321–326.

    Google Scholar 

  • Moed, J. R. & G. M. Hallegraeff, 1978. Some problems in the estimation of chlorophyll a and phaeopigments from pre- and post-acidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.

    Google Scholar 

  • Müller, O., 1899. Bacillareen aus den Natronthalen von El Kab (ober-Aegypten). Hedwigia 38: 274–321.

    Google Scholar 

  • Ogawa, T. & G. Terui, 1972. Growth kinetics of Spirulina platensis in autotrophic and mixotrophic cultures. Proc. IV IFS: Ferment. Technol. Today 543–549.

  • Padan, E. & M. Shilo, 1969. Distribution of cyanophages in natural habitats. Verh. int. Ver. Limnol. 17: 747–751.

    Google Scholar 

  • Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.

    Google Scholar 

  • Prescott, G. W., 1962. Algae of the Western Great Lakes Area. Wm. G. Brown Co., Publ. 977 pp.

  • Rhee, G-Y., 1972. Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr. 17: 505–514.

    Google Scholar 

  • Rhodes, K. S., 1981. Oxygen sensitivity of nitrogen fixation in the cyanobacterium Anabaenopsis arnoldii. Ph.D. Thesis, Univ. Michigan, Ann Arbor (Mich.). 191 pp.

  • Shilo, M., 1970. Lysis of blue-green algae by myxobacter. J. Bact. 104: 453–461.

    Google Scholar 

  • Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  • Tilman, D., 1978. The role of nutrient competition in a predictive theory of phytoplankton population dynamics. Mittl. int. Ver. Limnol. 21: 585–592.

    Google Scholar 

  • Tuite, C. H., 1981. Standing crop densities and distribution of Spirulina and benthic diatoms in East African alkaline saline lakes. Freshwat. Biol. 11: 345–360.

    Google Scholar 

  • Vareschi, E., 1978. The ecology of Lake Nakuru (Kenya). I. Abundance and feeding of the Lesser Flamingo. Oecologia 32: 11–35.

    Google Scholar 

  • Vareschi, E., 1979. The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger = Sarotherden alcalcium grahami Boulenger). Oecologia 37: 321–335.

    Google Scholar 

  • Vareschi, E., 1982. The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia 55: 81–101.

    Google Scholar 

  • Vareschi, E. & A. Vareschi, 1984. The ecology of Lake Nakuru (Kenya). IV. Biomass and distribution of consumer organisms. Oecologia 61: 70–82.

    Google Scholar 

  • Vareschi, E. & J. Jacobs, 1984. The ecology of Lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia 61: 83–98.

    Google Scholar 

  • Vareschi, E. & J. Jacobs, 1985. The ecology of Lake Nakuru. VI. Synopsis of production and energy flow. Oecologia 65: 412–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melack, J.M. Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158, 1–14 (1988). https://doi.org/10.1007/BF00026264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026264

Key words

Navigation