Skip to main content
Log in

Physical and chemical characteristics of the Blue Nile and the White Nile at Khartoum

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fortnightly measurements of physical and chemical variables were made at two locations on the Blue and White Niles near Khartoum from August 1968 to December 1970. Variables analysed from each river were: temperature, pH, total residue, current velocity, oxygen, alkalinity, phosphate, nitrate, ammonia, silica, sulphate, iron, calcium, magnesium, sodium, potassium and oxidizable organic matter. The seasonal variations of these factors in the two Niles are compared and the interrelationships existing between some of them are discussed. Comparisons with earlier studies on the Nile and with some tropical rivers are made.

In the Blue Nile, the amounts of suspended matter and nutrients are largely dependent upon the flood regime. Nitrate, phosphate, iron, oxidizable organic matter and total residue increase considerably in the Blue Nile when the river is in flood (peaks: 1 880 µg NO3-N l−1; 0.31 mg Fe l−1; 3 842 mg total residue · l−1).

In the White Nile, concentrations of nitrate, phosphate, iron, oxidizable organic matter and total residue attain their peaks during the rainy season (270 µg NO3-N l−1; 163 tag PO4-P l−1; 0.46 mg Fe · l−1; 502 mg total residue · l−1).

In both rivers, alkalinity, calcium, sodium and potassium tend to increase during the dry season while declining in the rainy season. Silica is depleted at certain times of the year, yet relatively high concentrations are maintained throughout the year and were not expected to limit growth of diatoms. Fall in silica concentrations, unlike nitrate, phosphate and iron, was always followed by a rapid restoration of a high level. Silica and magnesium showed no response to changes in discharge rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association & Water Pollution Control Federation, 1965. Standard methods for the examination of water and wastewater, 12th ed. American Public Health Association Inc., New York, 769 pp.

    Google Scholar 

  • Balon, E. K. & Coche, A. G., 1974. Lake Kariba: A man-made tropical ecosystem in Central Africa. Monogr. Biol. 24: 767 pp.

    Google Scholar 

  • Beauchamp, R. S. A., 1953. Sulphate in African inland waters. Nature 171: 769–771.

    Google Scholar 

  • Biswas, S., 1968. Hydrobiology of the Volta River and some of its tributaries before the formation of the Volta Lake. Ghana J. Sci. 8: 152–166.

    Google Scholar 

  • Boyden, C. R., Brown, B. E., Lamb, K. P., Drucker, R. F. & Tuft, S. J., 1978. Trace elements in the Upper Fly River, Papua New Guinea. Freshwat. Biol. 8: 189–205.

    Google Scholar 

  • Brook, A. J., 1954. A systematic account of the phytoplankton of the Blue and White Niles. Ann. Mag. nat. Hist., Set. 12, 7: 648–656.

    Google Scholar 

  • Brook, A. J. & Rzóska, J., 1954. The influence of the Gebel Aulyia dam on the development of Nile plankton. J. anim. Ecol. 23: 101–114.

    Google Scholar 

  • Gay, P. A., 1958. Eichhornia crassipes in the Nile of the Sudan. Nature 182: 538–539.

    Google Scholar 

  • Hall, A., Valente, I. & Davies, B. R., 1977. The Zambezi River in Moçambique: The physico-chemical status of the middle and lower Zambezi prior to the closure of the Cabora Bassa dam. Freshwat. Biol. 7: 187–206.

    Google Scholar 

  • Hammerton, D., 1972. The Nile River — A case history, pp. 171–214. In: Oglesby, R. T., Carlson, C. A. & McCann, J. A. (eds.), River Ecology and Man. Academic Press, New York and London. 465 pp.

    Google Scholar 

  • Holden, M. J. & Green, J., 1960. The hydrology and plankton of the River Sokota. J. anim. Ecol. 29: 65–84.

    Google Scholar 

  • Hurst, H. E., 1957. The Nile, a general account of the river and the utilization of its waters, 2nd ed. Constable, London. 331 pp.

    Google Scholar 

  • Lakshminarayana, J. S. S., 1965. Studies on the phytoplankton of the River Ganges, Varanasi, India. Hydrobiologia 25: 119–137.

    Google Scholar 

  • MacCrimmon, H. R. & Kelso, J. R. M., 1970. Seasonal variation in selected nutrients of a river system. J. Fish. Res. Bd Can. 27: 837–846.

    Google Scholar 

  • Mackereth, F. J. H., 1963. Some methods of water analysis for limnologists. Freshwater Biological Association Scientific Publication No. 21.

  • Mortimer, C. H., 1941, 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329; 30: 147–201.

    Google Scholar 

  • Moss, B., 1969. Limitation of algal growth in some Central African waters. Limnol. Oceanogr. 14: 591–601.

    Google Scholar 

  • Munawar, M., 1970. Limnological studies on freshwater ponds of Hyderabad, India. I. The biotope. Hydrobiologia 35: 127–162.

    Google Scholar 

  • Prosser, M. V., Wood, R. B. & Baxter, R. M., 1968. The Bisfhotu Crater Lakes. A bathymetric and chemical study. Arch. Hydrobiol. 65: 309–324.

    Google Scholar 

  • Prowse, G. A. & Talling, J. F., 1958. The seasonal growth and succession of plankton algae in the White Nile. Limnol. Oceanogr. 3: 222–238.

    Google Scholar 

  • Ruttner, F., 1963. Fundamental of limnology, 3rd ed. University of Toronto Press, Toronto, Ontario, 295 pp.

    Google Scholar 

  • Rzóska, J., Brook, A. J. & Prowse, G. A., 1955. Seasonal plankton development in the White and Blue Niles near Khartoum. Verh. int. Ver. Limnol. 12: 327–334.

    Google Scholar 

  • Seenayya, G., 1971. Ecological studies in the plankton of certain freshwater ponds of Hyderabad, India. Hydrobiologia 37: 7–31; 55–88.

    Google Scholar 

  • Sinada, F. & Abdel Karim, A. G., 1984. A quantitative study of the phytoplankton in two African Rivers: The Blue Nile and White Nile at Khartoum. Hydrobiologia (this volume).

  • Sinada, F. & Abdel Karim, A. G., 1984. Primary production and respiration of the phytoplankton in the Blue Nile and White Nile at Khartoum. Hydrobiologia (this volume).

  • Talling, J. F., 1957. The longitudinal succession of water characteristics in the White Nile. Hydrobiologia 11: 73–89.

    Google Scholar 

  • Talling, J. F. & Rzóska, J., 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol. 55: 637–662.

    Google Scholar 

  • Talling, J. F. & Talling, I. B., 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. 50: 421–463.

    Google Scholar 

  • The Tintometer Ltd. 1967. A handbook of colorimetric chemical analytical methods, 7th ed. The Tintometer Ltd., Salisbury, England.

    Google Scholar 

  • Truesdale, G. A., Downing, A. L. & Lowden, G. F., 1955. The solubility of oxygen in pure water and sea-water. J. appl. Chem. 5: 53–62.

    Google Scholar 

  • Venkateswarlu, V., 1969. An ecological study of the algae of the River Mossi, Hyderabad (India) with special reference to water pollution. I. Physico-chemical complexes. Hydrobiologia 33: 117–143.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders Co., Philadelphia, London, Toronto. 743 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinada, F., Abdel Karim, A.G. Physical and chemical characteristics of the Blue Nile and the White Nile at Khartoum. Hydrobiologia 110, 21–32 (1984). https://doi.org/10.1007/BF00025772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025772

Keywords

Navigation