Skip to main content
Log in

Transformation of plant cells via Agrobacterium

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Albright LM, Yanofsky MF, Leroux B, Ma D, Nester EW: Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single stranded T-DNA. J Bacteriol 169: 1046–1055 (1987).

    PubMed  Google Scholar 

  2. Alt-Moerbe J, Neddermann P, Von Lintig J, Weiler EW, Schröder J: Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet 213: 1–8 (1988).

    Article  Google Scholar 

  3. Bakkeren G, Koukolikova-Nicola Z, Grimsley N, Hohn B: Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57: 847–857 (1989).

    Article  PubMed  Google Scholar 

  4. Bevan M: Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  5. Bevan MW, Chilton M-D: T-DNA of the Agrobacterium Ti and Ri plasmids. Ann Rev Genet 16: 357–384 (1982).

    Article  PubMed  Google Scholar 

  6. Binns AN, Thomashow MF: Cell biology of Agrobacterium infection and transformation of plants. Ann Rev Microbiol 42: 575–606 (1988).

    Article  Google Scholar 

  7. Braun AC: A physiological basis for autonomous growth of crown gall tumor cell. Proc Natl Acad Sci USA 44: 344–349 (1958).

    Google Scholar 

  8. Buchanan-Wollaston V, Passiatore JE, Cannon F: The mod and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172–175 (1987).

    Article  Google Scholar 

  9. Bytebier B, Deboeck F, De Greve H, Van Montagu M, Hernalsteens J-P: T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci USA 84: 5345–5349 (1987).

    Google Scholar 

  10. Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Theines C, Nester EW: Role of Agrobacterium tumefaciens ChvA protein in export of β-1,2 glucan. J Bacteriol 171: 1609–1615 (1989).

    PubMed  Google Scholar 

  11. Capone I, Cardarelli M, Trovato M, Costantino P: Upstream non-coding region which confers polar expression to Ri plasmid root-inducing gene rolB. Mol Gen Genet 216: 239–244 (1989).

    Article  Google Scholar 

  12. Casse F, Boucher C, Julliot JS, Michel M, Dénarié J: Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113: 229–242 (1979).

    Google Scholar 

  13. Catlin D, Ochoa O, McCormick S, Quiros CF: Celery transformation by Agrobacterium tumefaciens: cytological and genetic analysis of transgenic plants. Plant Cell Rep 7: 100–103 (1988).

    Article  Google Scholar 

  14. Citovsky V, Wong ML, Zambryski P: Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193–1197 (1989).

    PubMed  Google Scholar 

  15. De Cleene M, De Ley J: The host range of crown gall. Bot Rev 42: 389–466 (1976).

    Google Scholar 

  16. De Framond AJ, Barton KA, Chilton M-D: Mini-Ti: a new vector strategy for plant genetic engineering. Bio/Technology 1: 262–269 (1983).

    Article  Google Scholar 

  17. Donson J, Gunn HV, Woolston CJ, Pinner MS, Boulton MI, Mullineaux PM, Davies JW: Agrobacterium-mediated infectivity of cloned Digitaria streak virus DNA. Virology 162: 248–250 (1988).

    Article  PubMed  Google Scholar 

  18. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW: Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161: 850–860 (1985).

    PubMed  Google Scholar 

  19. Feldmann KA, Marks MD, Christianson ML, Quatrano RS: A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351–1354 (1989).

    Google Scholar 

  20. Forst SA, Delgado J, Inouye M: DNA-binding properties of the transcription activator (OmpR) for the upstream sequences of ompF in Escherichia coli are altered by envZ mutations and medium osmolarity. J Bacteriol 171: 2949–2955 (1989).

    PubMed  Google Scholar 

  21. Gietl C, Koukolikova-Nicola Z, Hohn B: Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006–9010 (1987).

    PubMed  Google Scholar 

  22. Graves ACF, Goldman SL: The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7: 43–50 (1986).

    Google Scholar 

  23. Graves ACF, Goldman SL: Agrobacterium tumefaciens-mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA encoded genes. J Bacteriol 169: 1745–1746 (1987).

    PubMed  Google Scholar 

  24. Grimsley N, Hohn B, Hohn T, Walden R: ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282–3286 (1986).

    Google Scholar 

  25. Grimsley N, Hohn T, Davies JW, Hohn B: Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325. 177–179 (1987).

    Article  Google Scholar 

  26. Hernalsteens J-P, Thia-Toong L, Schell J, Van Montagu M: An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039–3041 (1984).

    Google Scholar 

  27. Herrera-Estrella A, Chen Z, Van Montagu M, Wang K: VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T strand molecules. EMBO J 7: 4055–4062 (1988).

    PubMed  Google Scholar 

  28. Hess JF, Oosawa K, Kaplan N, Simon MI: Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53: 79–87 (1988).

    Article  PubMed  Google Scholar 

  29. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir and T region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).

    Google Scholar 

  30. Hooykaas PJJ, Den Dulk-Ras H, Schilperoort RA: The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11: 791–794 (1988).

    Google Scholar 

  31. Hooykaas PJJ, Hofker M, Den Dulk-Ras H, Schilperoort RA: A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11: 195–205 (1984).

    PubMed  Google Scholar 

  32. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A: Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium explanta. J Gen Microbiol 98: 477–484 (1977).

    Google Scholar 

  33. Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764 (1984).

    Google Scholar 

  34. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  35. Igo MM, Ninfa AJ, Silhavy TJ: A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation. Genes & Devel 3: 598–605 (1989).

    Google Scholar 

  36. Jayaswal RK, Veluthambi K, Gelvin SB, Slightom JL: Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169: 5035–5045 (1987).

    PubMed  Google Scholar 

  37. Jianping Y, Qiquan S, Xingcun J: Agrobacterium tumefaciens-mediated transformation of the monocot Hemerocallis citrina and Lycoris radiata. Gen Manipul in Crops Newsl 4: 86–91 (1988).

    Google Scholar 

  38. Kawai S, Kobayashi A, Kawazu K: A bacterial extracellular polysaccharide which enhances the attachment of Agrobacterium tumefaciens to the plant cell surface. Experientia 45: 201–202 (1989).

    Google Scholar 

  39. Keener J, Kustu S: Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci USA 85: 4976–4980 (1988).

    PubMed  Google Scholar 

  40. Kersters K, De Ley J: Genus III. Agrobacterium Conn 1942. In: Krieg NR (ed) Bergey's Manual of Systematic Bacteriology, pp. 244–254. Williams & Wilkins, Baltimore (1984).

    Google Scholar 

  41. Klapwijk PM, Scheulderman T, Schilperoort RA: Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids in Agrobacterium tumefaciens: evidence for a common regulatory gene and separate operons. J Bacteriol 136: 775–785 (1987).

    Google Scholar 

  42. Klee HJ, Hayford MB, Rogers SG: Gene rescue in plants: a model system for ‘shotgun’ cloning by retransformation. Mol Gen Genet 210: 282–287 (1987).

    Article  Google Scholar 

  43. Krens FA, Mans RMW, Van Slogteren TMS, Hoge JHC, Wullems GJ, Schilperoort RA: Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti-plasmid: co-transfer of T-DNA and non-T-DNA sequences. Plant Mol Biol 5: 223–234 (1985).

    Google Scholar 

  44. Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens JP, Van Montagu M, Schell J: Genetic identification of functions of Tl-DNA transcripts in octopine crown galls. EMBO J 1: 147–152 (1982).

    Google Scholar 

  45. Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW: Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856 (1987).

    PubMed  Google Scholar 

  46. Manoil C, Beckwith J: Tn phoA: a transposon probe for protein export signals. Proc Natl Acad Sci USA 82: 8129–8133 (1985).

    PubMed  Google Scholar 

  47. Melchers LS, Maroney MJ, Den Dulk-Ras A, Thompson DV, Van Vuuren HAJ, Schilperoort RA, Hooykaas RA: Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF-locus. Proc Natl Acad Sci USA, submitted (1989).

  48. Melchers LS, Regensburg-Tuïnk AJG, Schilperoort RA, Hooykaas PJJ: Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol Microbiol 3: 969–977 (1989).

    PubMed  Google Scholar 

  49. Melchers LS, Regensburg-Tuïnk TJG, Bourret RB, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919–1925 (1989).

    PubMed  Google Scholar 

  50. Melchers LS, Thompson DV, Idler KB, Schilperoort RA, Hooykaas PJJ: Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti plasmid: significant homology between virG and the regulatory genes ompR, phoB and dye of E. coli. Nucleic Acids Res 14: 9933–9942 (1986).

    PubMed  Google Scholar 

  51. Melchers LS, Thompson DV, Idler KD, Neuteboom STC, De Maagd RA, Schilperoort RA, Hooykaas PJJ: Molecular characterization of the virulence gene virA of the Agrobacterium tumefaciens octopine Ti plasmid. Plant Mol Biol 9: 635–645 (1987).

    Google Scholar 

  52. Messens E, Lenaerts A, Van Montagu M, Hedges RW: Genetic basis for opine secretion from crown gall tumour cells. Mol Gen Genet 199: 344–348 (1985).

    Article  Google Scholar 

  53. Nixon BT, Ronson CW, Ausubel FM: Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 83: 7850–7854 (1986).

    PubMed  Google Scholar 

  54. Peralta EG, Hellmiss R, Ream W: Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137–1142 (1986).

    Google Scholar 

  55. Petit A, Tempé J: Isolation of Agrobacterium Ti-plasmid regulatory mutants. Mol Gen Genet 167: 147–155 (1978).

    Article  Google Scholar 

  56. Powell BS, Rogowsky PM, Kado CI: virG of Agrobacterium tumefaciens plasmid pTiC58 encodes a DNA-binding protein. Mol Microbiol 3: 411–419 (1989).

    PubMed  Google Scholar 

  57. Powell GK, Hommes NG, Kuo J, Castle LA, Morris RG: Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. Mol Plant-Microbe Interactions 1: 235–242 (1988).

    Google Scholar 

  58. Recourt K, Van Brussel AAN, Driessen AJM, Lugtenberg BJJ: Accumulation of a nod gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 171: 4370–4377 (1989).

    PubMed  Google Scholar 

  59. Rodenburg CW, De Groot MJA, Schilperoort RA, Hooykaas PJJ: Single stranded DNA used as an efficient new vehicle for plant protoplast transformation. Plant Mol Biol 3, in press (1989).

  60. Schmülling T, Schell J, Spena A: Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629 (1988).

    Google Scholar 

  61. Schäfer W, Görz A, Kahl G: T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532 (1987).

    Article  Google Scholar 

  62. Sen WH, Petit A, Guern J, Tempé J: Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85: 3417–3421 (1988).

    Google Scholar 

  63. Simoens C, Alliotte Th, Mendel R, Müller A, Schiemann J, Van Lijsebettens M, Schell J, Van Montagu M, Inze D: A binary vector for transferring genomic libraries to plants. Nucleic Acids Res 14: 8073–8090 (1986).

    PubMed  Google Scholar 

  64. Spencer PA, Towers GHN: Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785 (1988).

    Article  Google Scholar 

  65. Stachel SE, Messens E, Van Montagu M, Zambryski P: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629 (1985).

    Google Scholar 

  66. Stachel SE, Nester EW: The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445–1454 (1986).

    PubMed  Google Scholar 

  67. Stachel SE, Timmerman B, Zambryski P: Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712 (1986).

    Google Scholar 

  68. Stachel SE, Timmerman B, Zambryski P: Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T strand molecules from the pTiA6 T region: requirement for 5′ virD gene products. EMBO J 6: 857–863 (1987).

    PubMed  Google Scholar 

  69. Stachel SE, Zambryski PC: virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46: 325–333 (1986).

    Article  PubMed  Google Scholar 

  70. Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P: Introduction of foreign genes into potato cultivars Bintje and Désirée using an Agrobacterium tumefaciens binary vector. Plant Cell Rep 7: 47–50 (1988).

    Article  Google Scholar 

  71. Teeri TH, Herrera-Estrella L, Depicker A, Van Montagu M, Palva ET: Identification of plant promoters in situ by T-DNA mediated transcriptional fusions to the npt-II gene. EMBO J 5: 1755–1760 (1986).

    Google Scholar 

  72. Tempé J, Goldmann A: Occurrence and biosynthesis of opines. In: Kahl G, Schell J (eds) Molecular Biology of Plant Tumors, pp. 427–449. Academic Press, New York (1982).

    Google Scholar 

  73. Tempé J, Petit A: Opine utilization by Agrobacterium. In: Kahl G, Schell J (eds) Molecular Biology of Plant Tumors, pp. 451–459. Academic Press, New York (1982).

    Google Scholar 

  74. Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967 (1984).

    Article  PubMed  Google Scholar 

  75. Tepfer DA, Tempé J: Production d'agropine par des racines formées sous l'action d'Agrobacterium rhizogenes, souche A4. C R Acad Sci 292D: 153–156 (1981).

    Google Scholar 

  76. Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE: Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209–3216 (1987).

    PubMed  Google Scholar 

  77. Thompson DV, Melchers LS, Idler KB, Schilperoort RA, Hooykaas PJJ: Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucleic Acids Res 16: 4621–4636 (1988).

    PubMed  Google Scholar 

  78. Toro N, Datta A, Yanofsky M, Nester E: Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci USA 85: 8558–8562 (1988).

    PubMed  Google Scholar 

  79. Ulian EC, Smith RH, Gould JH, McKnight TD: Transformation of plants via the shoot apex. In Vitro Cell Devel Biol 24: 951–954 (1988).

    Google Scholar 

  80. Valvekens D, Van Montagu M, Van Lijsebettens M: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540 (1988).

    Google Scholar 

  81. Van Haaren MJJ, Pronk JT, Schilperoort RA, Hooykaas PJJ: Functional analysis of the Agrobacterium tumefaciens octopine Ti-plasmid left and right T region border fragments. Plant Mol Biol 8: 95–104 (1987).

    Google Scholar 

  82. Van Haaren MJJ, Sedee NJA, De Boer HA, Schilperoort RA, Hooykaas PJJ: Mutational analysis of the conserved domains of a T region border repeat of Agrobacterium tumefaciens. Plant Mol Biol 13, in press (1989).

  83. Van Haaren MJJ, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Overdrive is a T-region transfer enhancer which stimulates T strand production in Agrobacterium tumefaciens. Nucleic Acids Res 15: 8983–8997 (1987).

    PubMed  Google Scholar 

  84. Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, Van Montagu M: Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742–743 (1975).

    PubMed  Google Scholar 

  85. Van Veen RJM, Den Dulk-Ras H, Bisseling T, Schilperoort RA, Hooykaas PJJ: Crown gall tumor and root nodule formation by the bacterium Phyllobacterium myrsinacearum after the introduction of an Agrobacterium Ti plasmid or a Rhizobium Sym plasmid. Mol Plant-Microbe Interactions 1: 231–234 (1988).

    Google Scholar 

  86. Wang K, Stachel SE, Timmerman B, Van Montagu M, Zambryski PC: Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587–591 (1987).

    Google Scholar 

  87. Ward ER, Barnes WM: VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T strand DNA. Science 242: 927–930 (1988).

    Google Scholar 

  88. Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW: Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263: 5804–5814 (1988).

    PubMed  Google Scholar 

  89. Weiss V, Magasanik B: Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc Natl Acad Sci USA 85: 8919–8923 (1988).

    PubMed  Google Scholar 

  90. White FF, Nester EW: Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134–1141 (1980).

    PubMed  Google Scholar 

  91. Winans SC, Ebert PR, Stachel SE, Gordon MP, Nester EW: A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83: 8278–8282 (1986).

    PubMed  Google Scholar 

  92. Winans SC, Kerstetter RA, Ward JE, Nester EW: A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Bacteriol 171: 1616–1622 (1989).

    PubMed  Google Scholar 

  93. Woolston CJ, Barker R, Gunn H, Boulton MI, Mullineaux PM: Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol 11: 35–43 (1988).

    Google Scholar 

  94. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D: Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326 (1982).

    Google Scholar 

  95. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).

    Google Scholar 

  96. Zerback R, Dressler K, Hess D: Flavonoid compounds from pollen and stigma of Petunia hybrida: inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid Plant Science 62: 83–91 (1989).

    Article  Google Scholar 

  97. Zorreguieta A, Geremia RA, Cavaignac S, Cangelosi GA, Nester EW, Ugalde RA: Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant-Microbe Interactions 121–127 (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooykaas, P.J.J. Transformation of plant cells via Agrobacterium . Plant Mol Biol 13, 327–336 (1989). https://doi.org/10.1007/BF00025321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025321

Key words

Navigation