Skip to main content
Log in

Photomorphogenic mutants of tomato

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Photomorphogenesis of tomato is being studied with the aid of mutants which are either modified in their photoreceptor composition or in their signal transduction chain(s). Several mutants affecting the phytochrome family of photoreceptors, some of which appear deficient for specific genes encoding phytochrome apoproteins have been isolated. In addition, other mutants, including transgenic lines overexpressing phytochrome A, exhibit exaggerated photomorphogenesis during de-etiolation. Anthocyanin biosynthesis and plastid development are being used as model systems for the dissection of the complex interactions among photomorphogenic photoreceptors and to elucidate the nature of their transduction chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamse, P., P.A.P.M. Jaspers, J.A. Bakker, J.C. Wesselius, G.H. Heeringa, R.E. Kendrick & M. Koornneef, 1988. Photophysiology of a tomato mutant deficient in labile phytochrome. J. Plant Physiol. 133: 436–440.

    Google Scholar 

  • Adamse, P., J.L. Peters, P.A.P.M. Jaspers, A.Van Tuinen, M. Koornneef & R.E. Kendrick, 1989. Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach. Photochem. Photobiol. 50: 107–111.

    Google Scholar 

  • Becker, T.W., C. Foyer & M. Caboche, 1992. Light-regulated expression of the nitrate-reductase and nitrite-reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato. Planta 188: 39–47.

    Google Scholar 

  • Bowler, C., G. Neuhaus, H. Yamagata & N.-H. Chua, 1994. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81.

    Google Scholar 

  • Boylan, M.T. & P.H. Quail, 1989. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765–773.

    Google Scholar 

  • Bardick, A.B., 1958. New mutants. Tomato Genet. Coop. Rep. 8: 9–11.

    Google Scholar 

  • Casal, J.J. & R.E. Kendrick, 1993. Impaired phytochrome-mediated shade-avoidance responses in the aurea mutant of tomato. Plant Cell Environ. 16: 703–710.

    Google Scholar 

  • Clack, T., S. Mathews & R.A. Sharrock, 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol. Biol. (in press).

  • Cordonnier-Pratt, M.-M., L.H. Pratt, B. Hauser, G. Kochert & M. Caboche, 1994. Comparative analysis of the phytochrome gene family in tomato (Lycopersicon esculentum Mill.) and sorghum (Sorghum bicolor [L.] Moench). Plant Physiol. 105 (Suppl.): 72.

    Google Scholar 

  • Georghiou, K. & R.E. Kendrick, 1991. The germination characteristics of phytochrome-deficient aurea mutant tomato seeds. Physiol. Plant 82: 127–133.

    Google Scholar 

  • Goud, K.V., R. Sharma, R.E. Kendrick & M. Furuya, 1991. Photoregulation of phenylalanine ammonia lyase is not correlated with anthocyanin induction in photomorphogenic mutants of tomato (Lycopersicon esculentum). Plant Cell. Physiol. 32: 1251–1258.

    Google Scholar 

  • Goud, K.V. & R. Sharma (1994) Regulation of photoinduction of cytosolic enzymes in aurea mutant of tomato (Lycopersicon esculentum). Plant Physiol. 105: 643–650.

    Google Scholar 

  • Hauser, B., M.-M. Cordonnier-Pratt & L.H. Pratt, 1994. Differential expression of five phytochrome genes in tomato (Lycopersicon esculentum Mill.). Plant Physiol. 105 (Suppl.): 72.

    Google Scholar 

  • Kendrick, R.E. & G.H.M. Kronenberg, 1994. Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ken-Dror, S. & B.A. Horwitz, 1990. Altered phytochrome regulation of greening in an aurea mutant of tomato. Plant Physiol. 92: 1004–1008.

    Google Scholar 

  • Kerckhoffs, L.H.J., R.E. Kendrick, G.C. Whitelam & H. Smith, 1992. Response of photomorphogenic tomato mutants to changes in the phytochrome photoequilibrium during the daily photoperiod. Photochem. Photobiol. 56: 611–616.

    Google Scholar 

  • Kerr, E.A., 1965. Identification of high-pigment, hp, tomatoes in the seedling stage. Can. J. Plant Sci. 45: 104–105.

    Google Scholar 

  • Kerr, E.A., 1979. Yellow-green-2 (yg-2) may be on chromosome 12. Tomato Genet. Coop. Rep. 29: 27–28.

    Google Scholar 

  • Kerr, E.A., 1981. Yellow-green-2 (yg-2) and auroid (aud) are alleles. Tomato Genet. Coop. Rep. 31: 8.

    Google Scholar 

  • Khush, G.S. & C.M. Rick, 1968. Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.

    Google Scholar 

  • Koornneef, M., J.H.van der Veen, C.J.P. Spruit & C.M. Karssen, 1981. Isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In: Induced Mutations—A Tool in Plant Breeding, pp. 227–232. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Koornneef, M., J.W. Cone, R.G. Dekens, E.G. O'Herne-Robers, C.J.P. Spruit & R.E. Kendrick, 1985. Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol. 120: 153–165.

    Google Scholar 

  • Koornneef, M. & R.E. Kendrick, 1994. Photomorphogenic mutants of higher plants. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 601–628. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Lipucci di Paola, M., F. Collina Grenci, L. Caltavuturo, F. Tognoni & B. Lercari, 1988. A phytochrome mutant from tissue culture of tomato. Adv. Hort. Sci. 2: 30–32.

    Google Scholar 

  • López-Juez, E., A. Nagatani, W.F. Buurmeijer, J.L. Peters, R.E. Kendrick & J.C. Wesselius, 1990. Response of light-grown wild-type and aurea-mutant tomato plants to end-of-day far-red light. J. Photochem. Photobiol. B: Biology 4: 391–405.

    Google Scholar 

  • McCormac, A.C., 1993. Photoregulation by the phytochrome family: A physiological study of transgenic plants. PhD Thesis, University of Leicester, UK.

  • Mochizuki, T. & S. Kamimura, 1985. Photoselective method for selection of hp at the cotyledon stage. Tomato Genet. Coop. Rep. 35: 12–13.

    Google Scholar 

  • Mohr, H., 1994. Coaction between pigment systems. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 353–373. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Neuhaus, G., C. Bowler, R. Kern & N.-H. Chua, 1993. Calcium/calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952.

    Google Scholar 

  • Oelmüller, R., R.E. Kendrick & W.R. Briggs, 1989. Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea-mutant of tomato. Plant Mol. Biol. 13: 223–232.

    Google Scholar 

  • Oelmüller, R. & R.E. Kendrick, 1991. Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol. Biol. 16: 293–299.

    Google Scholar 

  • Parks, B.M. & P.H. Quail, 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 5: 39–48.

    Google Scholar 

  • Parks, B.M., A.M. Jones, P. Adamse, M. Koornneef, R.E. Kendrick & P.H. Quail, 1987. The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol. Biol. 9: 97–107.

    Google Scholar 

  • Peters, J.L., A.van Tuinen, P. Adamse, R.E. Kendrick & M. Koornneef, 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661–666.

    Google Scholar 

  • Peters, J.L., M.E.L. Schreuder, G.H. Heeringa, J.C. Wesselius, R.E. Kendrick & M. Koornneef, 1992a. Analysis of the response of photomorphogenetic tomato mutants to end-of-day far-red light. Acta Hort. 305: 67–77.

    Google Scholar 

  • Peters, J.L., M.E.L. Schreuder, S.J.W. Verduin & R.E. Kendrick, 1992b. Physiological characterization of a high pigment mutant of tomato. Photochem. Photobiol. 56: 75–82.

    Google Scholar 

  • Quail, P.H., 1994. Phytochrome genes and their expression. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 71–104. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Quail, P.H., W.R. Briggs, J. Chory, R.P. Hangarter, N.P. Harberd, R.E. Kendrick, M. Koornneef, B. Parks, R.A. Sharrock, E. Schäfer, W.F. Thompson & G.C. Whitelam, 1994. Spotlight on phytochrome nomenclature. Plant Cell 6: 468–471.

    Google Scholar 

  • Raynard, G.B., 1956. Origin of the Webb Special (Back Queen) tomato. Tomato Genet. Coop. Rep. 6: 22.

    Google Scholar 

  • Rick, C.M., 1974. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42: 493–510.

    Google Scholar 

  • Rick, C.M., A.F. Reeves & R.W. Zobel, 1968. Inheritance and linkage relations of four new mutants. Tomato Genet. Coop. Rep. 18: 34–35.

    Google Scholar 

  • Sanders, D.C., D.M. Pharr & T.R. Konsler, 1975. Chlorophyll content of a dark green mutant of ‘Manapal’ tomato. Hort Sci. 10: 262–34.

    Google Scholar 

  • Sharma, R., E. López-Juez, A. Nagatani & M. Furuya, 1993. Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of the aurea mutant of tomato. Plant J. 4: 1035–1042.

    Google Scholar 

  • Sharrock, R.A., B.M. Parks, M. Koornneef & P.H. Quail, 1988. Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol. Gen. Genet. 213: 9–14.

    Google Scholar 

  • Sharrock, R.A. & P.H. Quail, 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop. 3: 1745–1757.

    Google Scholar 

  • Soressi, G.P. & F. Salamini, 1975. New spontaneous or chemically-induced fruit ripening tomato mutants. Tomato Genet. Coop. Rep. 25: 21–22.

    Google Scholar 

  • Thompson, A.E., R.W. Hepler & E.A. Kerr, 1962. Clarification of the inheritance of high total carotenoid pigments in tomato. Am. Soc. Hort. Sci. 81: 434–442.

    Google Scholar 

  • Van Tuinen, A., L.H.J. Kerckhoffs, A. Nagatani, R.E. Kendrick & M. Koornneef, 1994. Far-red light-insensitive mutants of tomato. Mol. Gen. Genet. (in press).

  • Von Wettstein Knowles, P., 1968. Mutants affecting anthocyanin synthesis in the tomato. II. Physiology. Hereditas 61: 255–275.

    Google Scholar 

  • Whitelam, G.C. & H. Smith, 1991. Retention of phytochrome-mediated shade avoidance response in phytochrome-deficient mutants of Arabidopsis, cucumber and tomato. J. Plant Physiol. 139: 119–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendrick, R.E., Kerckhoffs, L.H.J., Pundsnes, A.S. et al. Photomorphogenic mutants of tomato. Euphytica 79, 227–234 (1994). https://doi.org/10.1007/BF00022523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00022523

Key words

Navigation