Skip to main content
Log in

Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Unicellular algae grow well under limiting CO2 conditions, aided by a carbon concentrating mechanism (CCM). In C. reinhardtii, this mechanism is inducible and is present only in cells grown under low CO2 conditions. We constructed a cDNA library from cells adapting to low CO2, and screened the library for cDNAs specific to low CO2-adapting cells. Six classes of low CO2-inducible clones were identified. One class of clone, reported here, represents a novel gene associated with adaptation of cells to air. A second class of clones corresponds to the air-inducible periplasmic carbonic anhydrase I (CAH1). These clones represent genes that respond to the level of CO2 in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Badger MR, Kaplan A, Berry JA: Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413 (1980).

    Google Scholar 

  2. Chen Z-Y, Burow MD, Mason CB, Moroney JV: A low CO2 inducible gene encoding an alanine aminotransferase in Chlamydomonas reinhardtii. Plant Physiol (submitted).

  3. Coleman JR, Grossman AR: Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO2. Proc Natl Acad Sci USA 81: 6049–6053 (1984).

    Google Scholar 

  4. Dorit RL, Ohara O, and Gilbert W: One-sided anchored polymerase chain reaction for amplification and sequencing of complementary DNA. Meth Enzymol 218: 36–47 (1993).

    Google Scholar 

  5. Frohman MA: RACE: Rapid amplification of cDNA ends. In: Innis MA et al. (eds) PCR Protocols: A Guide to Methods and Applications, pp. 28–38. Academic Press, San Diego, CA (1990).

    Google Scholar 

  6. Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S: Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 9779–9783 (1990).

    Google Scholar 

  7. Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S: cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci USA 87: 4383–4387 (1990).

    Google Scholar 

  8. Geragthy AM, Anderson JC, Spalding MH: A 36 kilodalton limiting-CO2 induced polypeptide of Chlamydomonas is distinct from the 37 kilodalton periplasmic carbonic anhydrase. Plant Physiol 93: 116–121 (1990).

    Google Scholar 

  9. Kindle KL: High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232 (1990).

    Google Scholar 

  10. Manuel LJ, Moroney JV: Inorganic carbon accumulation by Chlamydomonas reinhardtii: new proteins are made during adaptation to low CO2. Plant Physiol 88: 491–496 (1988).

    Google Scholar 

  11. Marek LF, Spalding MH: Changes in photorespiratory enzyme activity in response to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 97: 420–425 (1991).

    Google Scholar 

  12. Moroney JV, Husic HD, Tolbert NE, Kitayama M, Manuel LJ, Togasaki RK: Isolation and characterization of a mutant of Chlamydomonas reinhardtii deficient in the CO2 concentrating mechanism. Plant Physiol 89: 897–903 (1989).

    Google Scholar 

  13. Moroney JV, Tolbert NE, Sears BB: Complementation analysis of the inorganic carbon concentrating mechanism of Chlamydomonas reinhardtii. Mol Gen Genet 204: 199–203 (1986).

    Google Scholar 

  14. Moroney JV, Mason CB: The role of the chloroplast in inorganic carbon acquisition by Chlamydomonas reinhardtii. Can J Bot 69: 1017–1024 (1991).

    Google Scholar 

  15. Ramazanov Z, Mason CB, Geraghty AM, Spalding MH, Moroney JV: The low CO2-inducible 36-kilodalton protein is localized to the chloroplast envelope of Chlamydomonas reinhardtii. Plant Physiol 101: 1195–1199 (1993).

    Google Scholar 

  16. Ramazanov Z, Rawat M, Henk MC, Mason CB, Matthews SW, Moroney JV: The induction of the CO2-concentrating mechanism is correlated with the formation of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta 195: 210–216 (1994).

    Google Scholar 

  17. Sen P, Murai N: Oligolabeling DNA probes to high specific activity with sequenase. Plant Mol Biol Rep 9: 127–130 (1991).

    Google Scholar 

  18. Spalding MH, PortisJr AR: A model of carbon dioxide assimilation in Chlamydomonas reinhardtii. Planta 164: 308–320 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burow, M.D., Chen, ZY., Mouton, T.M. et al. Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2 . Plant Mol Biol 31, 443–448 (1996). https://doi.org/10.1007/BF00021807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00021807

Key words

Navigation