Skip to main content
Log in

Cloning and sequence analysis of a signal peptidase I from the thermophilic cyanobacterium Phormidium laminosum

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Type I signal peptidases are a widespread family of enzymes which remove the presequences from proteins translocated across cell membranes, including thylakoid and cytoplasmic membranes of cyanobacteria and thylakoid membranes of chloroplasts. We have cloned and sequenced a signal peptidase gene from the thermophilic cyanobacterium Phormidium laminosum which is believed to encode an enzyme common to both membrane systems. The deduced amino acid sequence is 203 residues long and although the overall similarity among signal peptidases is rather low there are a number of identifiable conserved regions present. The P. laminosum enzyme is predicted to have a single transmembrane domain, in contrast to other Gram-negative bacterial sequences, but similar to other type I signal peptidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Assali NE, Martin WF, Sommerville CC, Loiseaux-de Goer S: Evolution of the rubisco operon from prokaryotes to algae: Structure and analysis of the rbcS gene of the brown alga Pylaiella littoralis. Plant Mol Biol 17: 853–863 (1991).

    Google Scholar 

  2. Barbrook AC, Packer JCL, Howe CJ: Components of the protein translocation machinery in the thermophilic cyanobacterium Phormidium laminosum. Biochem Biophys Res Comm 197: 874–877 (1993).

    Google Scholar 

  3. Beanland TJ: Evolutionary relationships between ‘Q-type’ photosynthetic reaction centres: hypothesis testing using parsimony. J Theoret Biol 145: 535–545 (1990).

    Google Scholar 

  4. Behrens M, Michaelis G, Pratje E: Mitochondrial inner membrane protease-1 of Saccharomyces cerevisiae shows sequence similarity to Escherichia coli leader peptidase. Mol Gen Genet 210: 167–176 (1991).

    Google Scholar 

  5. Black MT: Evidence that the catalytic activity of prokaryotic leader peptidase depends on the operation of a serine-lysine catalytic dyad. J Bact 175: 4957–4961 (1993).

    Google Scholar 

  6. Black MT, Munn GR, Allsop AE: On the catalytic mechanism of prokaryotic leader peptidase 1. Biochem J 282: 539–543 (1992).

    Google Scholar 

  7. Bohni PC, Deshaies RJ, Schekman RW: SEC11 is required for signal peptide processing and yeast cell growth. J Cell Biol 106: 1035–1042 (1988).

    Google Scholar 

  8. Dalbey RE, von Heijne G: Signal peptidases in prokaryotes and eukaryotes — a new protease family. Trends Biochem Sci 17: 474–478 (1992).

    Google Scholar 

  9. Dalbey RE, Wickner W: Leader peptidase catalyses the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260: 15925–15931 (1985).

    Google Scholar 

  10. Greenburg G, Shelness GS, Blobel G: A subunit of mammalian signal peptidase is homologous to yeast SEC11 protein. J Biol Chem 264: 15762–15765 (1989).

    Google Scholar 

  11. Halpin C, Elderfield PD, James HE, Zimmermann R, Dunbar B, Robinson C: The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. EMBO J 8: 3917–3921 (1989).

    Google Scholar 

  12. Howe CJ, Wallace TP: Prediction of leader peptidase cleavage sites for polypeptides of the thylakoid lumen. Nucl Acids Res 18: 3417 (1990).

    Google Scholar 

  13. Inada I, Court DL, Ito K, Nakamura Y: Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli. J Bact 171: 585–587 (1989).

    Google Scholar 

  14. Jones MC, Jenkins JM, Smith AG, Howe CJ: Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24: 435–448 (1994).

    Google Scholar 

  15. Kirwin PM, Elderfield PD, Robinson C: Transport of proteins into chloroplasts. Partial purification of thylakoidal processing peptidase involved in plastocyanin biogenesis. J Biol Chem 262: 16386–16390 (1987).

    Google Scholar 

  16. Lockhart PJ, Penny D, Hendy MD, Howe CJ, Beanland TJ, Larkum AWD: Controversy on chloroplast origins. FEBS Lett 301: 127–131.

  17. Morden CW, Golden SS: Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. J Mol Evol 32: 379–395 (1991).

    Google Scholar 

  18. Nakai M, Nohara T, Sugita D, Endo T: Identification and characterisation of the secA protein homologue in the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Comm 200: 844–851 (1994).

    Google Scholar 

  19. Nakai M, Sugita D, Omata T, Endo T: Sec Y protein is localized in both the cytoplasmic and thylakoid membranes of the cyanobacterium Synechococcus PCC7942. Biochem Biophys Res Comm 193: 228–234 (1993).

    Google Scholar 

  20. Nakai M, Tanaka A, Omata T, Endo T: Cloning and characterisation of the secY gene from the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta 1171: 113–116 (1992).

    Google Scholar 

  21. Olsen GJ, Woese CR: Ribosomal RNA—a key to phylogeny. FASEB J 7: 113–123 (1993).

    Google Scholar 

  22. Omata T, Murata N: Isolation and characterisation of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 24: 1101–1112 (1983).

    Google Scholar 

  23. Ray P, Dev I, MacGregor C, Bassford P: Signal peptidases. Curr Top Microbiol Immunol 125: 75–102 (1986).

    Google Scholar 

  24. Shelness GS, Blobel G: Two subunits of canine signal peptidase complex are homologous to yeast SEC11 protein. J Biol Chem 265: 9512–9519 (1990).

    Google Scholar 

  25. Smith D, Howe CJ: The distribution of photosystem I and photosystem II polypeptides between the cytoplasmic and thylakoid membranes of cyanobacteria. FEMS Microbiol Lett 110: 341–348 (1993).

    Google Scholar 

  26. Sung M, Dalbey RE: Identification of potential activesite residues in the Escherichia coli leader peptidase. J Biol Chem 267: 13154–13159 (1992).

    Google Scholar 

  27. van Dijl JM, de Jong A, Vehmaanpera J, Venema G, Bron S: Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11: 2819–2828 (1992).

    Google Scholar 

  28. van Dijl JM, van den Bergh R, Reversma T, Smith H, Bron S, Venema G: Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. Mol Gen Genet 223: 233–240 (1990).

    Google Scholar 

  29. Wallace TP, Robinson C, Howe CJ: The reaction specificities of the pea and cyanobacterial thylakoid processing peptidase are similar but not identical. FEBS Lett 272: 141–144 (1990).

    Google Scholar 

  30. Wallace TP, Stewart AC, Pappin D, Howe CJ: Gene sequence for the 9 kDa component of photosystem II from the cyanobacterium Phormidium laminosum indicates similarities between cyanobacterial and other leader sequences. Mol Gen Genet 216: 334–339 (1989).

    Google Scholar 

  31. Woese CR: Bacterial evolution. Microbiol Rev 51: 221–271 (1987).

    Google Scholar 

  32. Wolfe PB, Wickner W, Goodman JM: Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J Biol Chem 258: 12073–12080 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Packer, J.C.L., André, D. & Howe, C.J. Cloning and sequence analysis of a signal peptidase I from the thermophilic cyanobacterium Phormidium laminosum . Plant Mol Biol 27, 199–204 (1995). https://doi.org/10.1007/BF00019191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019191

Key words

Navigation