Skip to main content
Log in

A pollen allergen-encoding gene is expressed in wheat ovaries

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To isolate genes specifically expressed at the initiation of plant embryo development we have applied a sensitive subtractive hybridization technique for three isogenic wheat lines of the so-called ‘Salmon system’ with either zygotic or autonomous embryo development. Here we present a gene sequence showing a high homology to grass pollen allergens of type II/III thought to be expressed in pollen tissue only. Surprisingly, the pollen allergen-like sequence, designated Tri a III, is also expressed in gynoecia of the sexual, male fertile wheat line ‘(aestivum)-Salmon’, whereas the two parthenogenetic and male sterile wheat lines ‘(caudata)-Salmon’ and ‘(kotschyi)-Salmon’ completely lack any Tri a III transcript. Our data suggest a positive correlation between the expression of this clone and the manifestation of male fertility. Northern and in situ hybridization analysis revealed that, in addition to its presence in pollen, Tri a III is expressed in the parenchymatous tissue of ‘(aestivum)-Salmon’ ovaries exclusively at the day of anthesis. This precise temporal and spatial expression pattern suggests a more general function of the pollen allergen-like sequence Tri a III not limited to the exhibition of allergens in pollen grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad AR, Mehrtens BJ, Mackenzie SA: Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7: 271–285 (1995).

    Google Scholar 

  2. Ansari AA, Shenbagamurthi P, Marsh DG: Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J Biol Chem 264: 11181–11185 (1989).

    Google Scholar 

  3. Ansari AA, Shenbagamurthi P, Marsh DG: Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28: 8665–8670 (1989).

    Google Scholar 

  4. AskerSE, JerlingL: Apomixis in Plants. CRC Press, Boca Raton/Ann Arbor/London/Tokyo (1992).

    Google Scholar 

  5. AvjiogluA, HoughT, SinghM, KnoxRB: Pollen allergens. In: WillamsEG, ClarkeAE, KnoxRB (eds) Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, pp. 336–359. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  6. BalzerH-J, BäumleinH: An improved gene expression screen. Nucl Acids Res 22: 2853–2854 (1994).

    Google Scholar 

  7. BreitenederH, PettenburgerK, BitoA, ValentaR, KraftD, RumpoldH, ScheinerO, BreitenbachM: The gene coding for the major birch pollen allergen Bet v I is highly homologous to a pea disease resistance response gene. EMBO J 8: 1935–1938 (1989).

    Google Scholar 

  8. ClarkAG, KaoT-H: Self-incompatibility: theoretical concepts and evolution. In: WillamsEG, ClarkeAE, KnoxRB (eds) Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, pp. 220–242. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  9. CoxKH, GoldbergRB: Analysis of plant gene expression. In: ShawCH (ed) Plant Molecular Biology: A Practical Approach, pp. 25–35. IRL Press, Washington, DC (1988).

    Google Scholar 

  10. Davies SP, Singh MB, Knox RB: Identification and in situ localization of pollen-specific genes. In: Russel SD, Dumas C (eds) Sexual Reproduction in Flowering Plants. Int Rev Cytol 140: 19–34 (1992).

  11. DolecekC, VrtalaS, LafferS, SteinbergerP, KraftD, ScheinerO, ValentaR: Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergens. FEBS Lett 335: 299–304 (1993).

    Google Scholar 

  12. FerreiraFD, Hoffmann-SommergruberK, BreitenederH, PettenburgerK, EbnerC, SommergruberW, SteinerR, BohleB, SperrWR, ValentP, KunglAJ, BreitenbachM, KraftD, ScheinerO: Purification and characterization of recombinant Bet v I, the major birch pollen allergen. Immunological equivalence to natural Bet v I. J Biol Chem 268: 19574–19580 (1993).

    Google Scholar 

  13. HarrisN, WilkinsonDG: In situ Hybridization: Application to Developmental Biology and Medicine. Cambridge University Press, Cambridge (1990).

    Google Scholar 

  14. HigginsDG, SharpPM: Clustal: a package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244 (1988).

    Google Scholar 

  15. HighS: Protein translocation at the membrane of the endoplasmic reticulum. Prog Biophys Mol Biol 63: 233–250 (1995).

    Google Scholar 

  16. KiharaH, TsunewakiK: Use of an alien cytoplasm as a new method of producing haploids. Jpn J Genet 37: 310–313 (1962).

    Google Scholar 

  17. KoltunowAM: Apomixis-other pathways for reproductive development in angiosperms. In: WillamsEG, ClarkeAE, KnoxRB (eds) Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, pp. 486–512. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  18. LeinA: Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z Indukt Abstamm Vererbungsl 81: 28–61 (1943).

    Google Scholar 

  19. LütckeHA, ChowKC, MickelFS, MossKA, KernHF, ScheeleGA: Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    Google Scholar 

  20. ManiatisT, FritschEF, SambrookJ: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  21. MarshDG, GoodfriendL, KingTP, LowensteinH, Platts-MillsTAE: Allergen nomenclature. J Allergy Immunol 80: 639–645 (1987).

    Google Scholar 

  22. MascarenhasJP: Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303–1314 (1993).

    Google Scholar 

  23. MatzkF, MeyerH-M, BäumleinH, BalzerH-J, SchubertI: A novel approach to the analysis of the initiation of embryo development in Gramineae. Sexual Plant Reprod 8: 266–272 (1995).

    Google Scholar 

  24. McCormickS: Male gametophyte development. Plant Cell 5: 1265–1275 (1993).

    Google Scholar 

  25. NaranjoT, RocaA, GoicoecheaPG, GiraldezR: Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882 (1987).

    Google Scholar 

  26. ReiserL, FischerRL: The ovule and the embryo sac. Plant Cell 5: 1291–1301 (1993).

    Google Scholar 

  27. RobertsAM, VanReeR, CardySM, BevanLJ, WalkerMR: Recombinant pollen allergens from Dactylis glomerata: prelimenary evidence that human IgE cross-reactivity between Dac g II and Lol p I/II is increased following grass pollen immunotherapy. Immunology 76: 389–396 (1992).

    Google Scholar 

  28. RussellSC: The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5: 1349–1359 (1993).

    Google Scholar 

  29. SandersLC, LordAM: A dynamic role for the stylar matrix in pollen tube extension. In: RusselSD, DumasC (eds) Sexual Reproduction in Flowering Plants. Int Review of Cytol 140: 297–318. Academic Press, New York (1992).

    Google Scholar 

  30. SidoliA, TamboriniE, GiuntiniI, LeviS, VolonteG, PainiC, DeLallaC, SiccardiAG, BaralleFE, GallianiS, ArosioP: Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J Biol Chem 268: 21819–21825 (1993).

    Google Scholar 

  31. StaigerCJ, CandeWZ: Microfilament distribution in maize meiotic mutants correlates with microtubule organization. Plant Cell 3: 637–644 (1991).

    Google Scholar 

  32. TaniguchiY, OnoA, SawataniM, NanbaM, KohnoK, UsuiH, KurimotoM, MatuhasiT: Cry j I, a major pollen allergen of Japanese cedar pollen, has pectate lyase enzyme activity. Allergy 50: 90–93 (1995).

    Google Scholar 

  33. ThompsonRD, BartelsD, HarberdNP, FlavellRB: Characterization of the multigene family coding for HMW glutenin subunits in wheat using cDNA clones. Theor Appl Genet 67: 87–96 (1983).

    Google Scholar 

  34. TsunewakiK, MukaiY: Wheat haploids through the Salmon method. In: BajajYPS (ed) Wheat: Biotechnology in Agriculture and Forestry, vol 13, pp. 460–478. Springer-Verlag, Berlin/Heidelberg (1990).

    Google Scholar 

  35. TurcichMP, HamiltonDA, MascarenhasJP: Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. Plant Mol Biol 23: 1061–1065 (1993).

    Google Scholar 

  36. VishnyakovaMA, WillemseMTM: Pollen-pistil interaction in wheat. Acta Bot Neerl 43: 51–64 (1994).

    Google Scholar 

  37. WangZ, BrownD: Gene expression screen. Proc Natl Acad Sci USA 88: 11505–11509 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balzer, HJ., Borisiuk, L., Meyer, HM. et al. A pollen allergen-encoding gene is expressed in wheat ovaries. Plant Mol Biol 32, 435–445 (1996). https://doi.org/10.1007/BF00019095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019095

Key words

Navigation