Skip to main content
Log in

Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fuente de Piedra saline lake is located in an endorheic basin in the south of Spain. This lake is very shallow (0.5 m max. depth during 1987–88) and relatively large (± 1350 ha). It is a temporary playa lake, showing irregular cycles, with frequent seasonal drought and a high degree of unpredictability. The lake was sampled monthly during a relatively rainy year (1987–88, 10.5 months permanence). The result of combined analyses for environmental variables (salinity, temperature and soluble inorganic forms of nitrogen and phosphorus), variables related to biological activity (chlorophyll ‘a’, sediment organic matter and redox potential) and the direct analysis of the planktonic community, shows the existence of two periods of dominance by autotrophs. The first occurs during winter, exhibits a progressively higher surface to volume ratio for phytoplankton and is followed in the spring by high zooplankton densities (Moina salina, Fabrea salina) and very low phytoplankton densities, suggesting the existence of a period with a detritus-based food web. The summer period coincides with a community better adapted to high salinities that is dominated by Dunaliella salina, D. viridis, diatoms and the ciliate Fabrea salina, and associated with high ammonium concentrations. A new period of organic matter accumulation could be facilitated, in the last moments before the lake dries, by a progressive decrease in zooplankton abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, M., 1990. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia 197: 221–231.

    Google Scholar 

  • Anderson, G. C., 1958. Seasonal characteristics of two saline lakes in Washington. Limnol. Oceanogr. 3: 51–68.

    Google Scholar 

  • Capblancq, J., 1990. Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207: 1–14.

    Google Scholar 

  • Choi, J. W. & D. Stoecker, 1989. Effects of fixation on cell volume of marine planktonic protozoa. Appl. Envir. Microbiol. 55: 1761–1765.

    Google Scholar 

  • Clavero, V., J. A. Fernández & F. X. Niel, 1990. Influence of salinity on the concentration and rate of interchange of dissolved phosphate between water and sediment in Fuente de Piedra lagoon (S. Spain). Hydrobiologia 197: 91–97.

    Google Scholar 

  • Comín, F. & M. Alonso, 1988. Spanish salt lakes: their chemistry and biota. Hydrobiologia 158: 237–245.

    Google Scholar 

  • Echevarría, F., 1987. Análisis de la alimentacion fitófaga ‘in situ’ de Ceriodaphnia spp (Cladocera): Variaciones a corto plazo. Tésis de Licenciatura. Universidad de Málaga, 134 pp.

  • Eppley, R. W., J. N. Rogers & J. J. McCathy, 1969. Halfsaturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912–920.

    Google Scholar 

  • Fernández, J. A., F. X. Niell & J. Lucena, 1985. A rapid and sensitive automated determination of phosphate in natural waters. Limnol. Oceanogr. 30: 227–230.

    Google Scholar 

  • Forsberg, C., S. O. Ryding, A. Claesson& A. Forsberg, 1978. Water chemical analyses and/or algal assay? Sewage effluent and polluted lake water studies. Mitt. Int. Ver. Theor. Angew. Limnol. 21: 352–363

    Google Scholar 

  • García, C. M. & F. X. Niell, 1991. Burrowig beetles of the genus Bledius (Staphylinidae) as agents of bioturbation in the emergent areas and shores of an athalassic inland lake (Fuente de Piedra, southern of Spain). Hydrobiologia 215: 163–173.

    Google Scholar 

  • Gervais, C., 1969. Influence de la concentration saline du milieu sur l'éclosion des kystes de Fabrea salina Henneguy (cilié hétérotriche). Protistologica V, fasc. 1: 109–114.

    Google Scholar 

  • Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr W. Junk Publishers, Dordrecht, 616 pp.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33: 796–822.

    Google Scholar 

  • Herberg, O., 1986. Valoración del impacto provocado por el arroyo Santillán en la Laguna de Fuente de Piedra (Málaga). Tésis de Licenciatura. Universidad de Málaga, 122 pp.

  • Holtan, H., L. Kamp-Nielsen & A. O. Stuanes, 1988. Phosphorus in soil, water and sediment: an overview. Hydrobiologia 170: 19–34.

    Google Scholar 

  • Hopkinson Jr., C. S., 1987. Nutrient regeneration in shallowwater sediments of the estuarine plume region of the nearshore Georgia Bight, USA. Mar. Biol. 94: 127–142.

    Google Scholar 

  • Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer Verlag, Berlin, 316 pp.

    Google Scholar 

  • I.G.M.E., 1986. Mapa geológico de España E. 1: 50.000. Hoja 1023. Ministerio de Industria y Energía, Madrid.

    Google Scholar 

  • I.G.M.E., 1988. Observaciones climatológicas e hidrogeológicas en la cuenca de Fuente de Piedra durante el año 1987–88. Nota técnica 336. Ministerio de Industria y Energia, Madrid, 39 pp.

    Google Scholar 

  • Lehman, J. T., 1976. The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnol. Oceanogr. 21: 501–516.

    Google Scholar 

  • Linares, L., 1990. Hidrogeología de la laguna de Fuente de Piedra (Málaga). Tesis Doctoral, Dpto. Geodinámica, Universidad de Granada, 343 pp.

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Marcus, N. H., 1984. Recruitment of copepod nauplii into the plankton: importance of diapause eggs and benthic processes. Mar. Ecol. Prog. Ser. 15: 47–54.

    Google Scholar 

  • Margalef, R., 1974. Ecologia. Omega, Barcelona, 951 pp.

    Google Scholar 

  • Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • Oláh, J., 1975. Metalimnion function in shallow lakes. In: Limnology of shallow waters. J. Salánki & J. E. Ponyi (eds), Symp. Biol. Hung. 15: 149–155.

  • Parsons, T. R., Y. Maita & C. M. Lalli 1984. A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford, 173 pp.

    Google Scholar 

  • Por, F. D., 1980. A classification of hypersaline waters, based on trophic criteria. Mar. Ecol. 1: 121–131.

    Google Scholar 

  • Post, F. J., L. J. Borowitzka, M. A. Borowitzka, B. Mackay & T. Moulton, 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105: 95–113.

    Google Scholar 

  • Poulet, S. A., 1982. Nutrition du zooplankton marin: interface particules-copepodes. Thèse de doctorat d'etat. Université Pierre et Marie Curie. Paris VI, 158 pp.

  • Rassoulzadegan, F., 1979. Cycles annuels de la distribution de differentes catégories de particules du seston et éssai d'identification des principales poussés phytoplanctoniques dans les eaux néritiques de Villefranche. J. exp. mar. Biol. Ecol. 38: 41–56.

    Article  Google Scholar 

  • Redfield, A. C., B. Ketchum & F. Richards, 1963. The influence of organisms on the composition of seawater. In M. Hill (ed.), The sea 2: 6–77. Interscience, New York.

  • Rendón, M., J. M. Vargas y J. M. Ramírez, 1991. Dinámica temporal y reproducción del flamenco común (Phoenicopterus ruber roseus) en la laguna de Fuente de Piedra (sur de España). In: Reunión técnica sobre la situación y problemática del Flamenco rosa (Phoenicopterus ruber roseus) en el Mediterráneo occidental y Africa noroccidental: 135–153.

  • Rodríguez, J., F. Jiménez, B. Bautista & V. Rodríguez, 1987. Planktonic biomass spectra dynamics during a winter production pulse in Mediterranean coastal waters. J. Plankton Res 9: 1183–1194.

    Google Scholar 

  • Rolke, M. & J. Lenz, 1984. Size structure analysis of zooplankton samples by means of an automated image analyzing system. J. Plankton Res. 6: 637–645.

    Google Scholar 

  • Sheldon, R. W., W. H. Sutcliffe Jr. & M. J. Paranjape, 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd Can., 34: 2344–2353.

    Google Scholar 

  • Shinn, J. A., 1941. Ind. Eng. Chem. (Annual edition), 13: 33. In J.D.H. Strickland and T.R. Parson. A practical handbook of seawater analysis. Fish. Res. Bd Can. Bull. 167.

  • Slawyk, G. & J. J. McIsaac, 1972. Comparison of two automated ammonium methods in a region of coastal upwelling. Deep-Sea Res. 19: 521–524.

    Google Scholar 

  • Sprules, G. W. & R. Knoechel, 1984. Lake ecosystem dynamics based on functional representations of trophic components. In D.G. Meyers & R. Strickler (eds), Trophic interactions within aquatic ecosystems. A.A.A.S. Selected Symp. 85. Westview-Boulder, Colorado: 383–403.

  • Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll ‘a’ in phytoplankton. Proc. Conf. prim. Prod. Meas. Mar. Freshwat. Hawaii. 1961: 142–146.

  • Tominaga, H., N. Tominaga & W. D. Williams, 1987. Concentration of some inorganic plant nutrients in saline lakes on the Yorke peninsula, South Australia. aust. J. mar. Freshwat. Res. 38: 301–305.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Vareschi, E., 1987. Saline lake ecosystems. In: E. D. Schulze & H. Zwölfer (eds), Potentials and limitations of ecosystem analysis. Ecol. Stud. 61 Springer-Verlag, Berlin, 347–364.

  • Vargas, J. M., M. Blasco & A. Antúnez, 1983. Los vertebrados de la Laguna de Fuente de Piedra (Málaga). ICONA. Monografías n°28.

  • Wainright, S. C., 1987. Stimulation of heterotrophic microplankton production by resuspended marine sediments. Science 238: 1710–1712.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. Richards, 1967. Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K. 47: 23–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, C.M., Niell, F.X. Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain). Hydrobiologia 267, 211–223 (1993). https://doi.org/10.1007/BF00018803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018803

Key words

Navigation