Skip to main content
Log in

Sulfonamide resistance gene for plant transformation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The sulfonamide resistance gene from plasmid R46 encodes for a mutated dihydropteroate synthase insensitive to inhibition by sulfonamides. Its coding sequence was fused to the pea ribulose bisphosphate carboxylase/oxygenase transit peptide sequence. Incubation of isolated chloroplasts with the fusion protein synthesised in vitro, showed that the bacterial enzyme was transported to the chloroplast stroma and processed into a mature form. Expression of the gene fusion in transgenic plants resulted in a high level of resistance to sulfonamides. Direct selection of transformed shoots on leaf explants was efficient using sulfonamides as sole selective agents. Transformed shoots rooted normally on sulfonamides at concentrations toxic for untransformed ones. Sulfonamide resistance was transmitted to the progeny of transformed plants as a single Mendelian dominant character. These results demonstrate that this chimeric gene can be used as an efficient and versatile selectable marker for plant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson CW, Straus JW, Dudock BS: Preparation of a cell-free protein-synthesizing system from wheat germ. Meth Enzym 101: 635–644 (1983).

    PubMed  Google Scholar 

  2. Anderson S, Smith SM: Synthesis of the small subunit of ribulose-bisphosphate carboxylase from genes cloned into plasmids containing the SP6 promoter. Biochem J 240: 709–715 (1986).

    PubMed  Google Scholar 

  3. Bevan MW, Flavell RB, Chilton MD: A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187 (1983).

    Google Scholar 

  4. Bevan M: Binary Agrobacterium vectors for plant transformation Nucl Acid Res 12: 8711–8721 (1984).

    Google Scholar 

  5. Budar F, Thia-Toong L, Van Montagu M, Hernalsteens JP: Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics 114: 303–313 (1986).

    Google Scholar 

  6. Cheung AY, Bogorad L, Van Montagu M, Schell J: Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci USA 85: 391–395 (1988).

    Google Scholar 

  7. Comai L, Larson-Kelly N, Kiser J, Mau CJD, Pokalsky AR, Shewmaker CK, McBride K, Jones A, Stalker DM: Chloroplast transport of a ribulose bisphosphate carboxylase small subunit-5-enolpyruvyl 3-phosphoshikimate synthase chimeric protein requires part of the mature small subunit in addition to the transit peptide. J Biol Chem 263: 15104–15109 (1988).

    PubMed  Google Scholar 

  8. Cossins EA: One-carbon metabolism. In: Davis DD (ed) The Biochemistry of Plants—A Comprehensive Treatise, Vol II pp 365–418. academic Press, New York (1980).

    Google Scholar 

  9. Dean C, Favreau M, Tamaki S, Bond-Nutter D, Dunsmuir P, Bedbrook J. Expression of tandem gene fusions in transgenic tobacco plants. Nucl Acids Res 16: 7601–7617 (1988).

    PubMed  Google Scholar 

  10. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J: Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518 (1987).

    Google Scholar 

  11. De Block M: Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76: 767–774 (1988).

    Google Scholar 

  12. Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM: Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/technology 5: 579–584 (1987).

    Google Scholar 

  13. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  14. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807 (1983).

    PubMed  Google Scholar 

  15. Franck A, Guilley H, Jonard G, Richards K, Hirth L: Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21: 285–294 (1980).

    Article  PubMed  Google Scholar 

  16. Guerineau F, Woolston S, Brooks L, Mullineaux P: An expression cassette for targeting foreign proteins into chloroplasts. Nucl Acids Res 16: 11380 (1988).

    PubMed  Google Scholar 

  17. Guerineau F, Mullineaux P: Nucleotide sequence of the sulfonamide resistance gene from plasmid R46. Nucl Acids Res 17: 4370 (1989).

    PubMed  Google Scholar 

  18. Haughn GW, Smith J, Mazur B, Somerville C: Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211: 266–271 (1988).

    Google Scholar 

  19. Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J: Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995 (1983).

    Google Scholar 

  20. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J: Expression of chimaeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303: 209–213 (1983).

    Google Scholar 

  21. Hille J, Verheggen F, Roelvink P, Franssen H, Van Kammen A, Zabel P: Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176 (1986).

    Google Scholar 

  22. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).

    Google Scholar 

  23. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  24. Jones JDG, Svab Z, Harper EC, Hurwitz CD, Maliga P: A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol Gen Genet 210: 86–91 (1987).

    Google Scholar 

  25. Lubben TH, Gatenby AA, Ahlquist P, Keegstra K: Chloroplast import characteristics of chimeric proteins. Plant Mol Biol 12: 13–18 (1989).

    Google Scholar 

  26. Maliga P, Svab Z, Harper EC, Jones JDG: Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol Gen Genet 214: 456–459 (1988).

    PubMed  Google Scholar 

  27. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning —A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  28. Matzke MA, Primig M, Trnovsky J, Matzke AJM: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649 (1989).

    Google Scholar 

  29. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR: Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl Acids Res 12: 7035–7056 (1984).

    PubMed  Google Scholar 

  30. Murashige T, Skoog F: A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  31. Robinson C, Ellis RJ: Transport of proteins into chloroplasts. The effect of incorporation of amino acid analogues on the import and processing of chloroplast polypeptides. Eur J Biochem 152: 67–73 (1985).

    PubMed  Google Scholar 

  32. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  33. Schreier PH, Seftor EA, Schell J, Bohnert HJ: The use of nuclear-encoded sequences to direct the lightregulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J 4: 25–32 (1985).

    Google Scholar 

  34. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer DM, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT: Engineering herbicide tolerance in transgenic plants. Science 233: 478–481 (1986).

    Google Scholar 

  35. Stalker DM, McBride KE, Malyj LD: Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423 (1988).

    Google Scholar 

  36. Streber WR, Willmitzer L: Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/technology 7: 811–816 (1989).

    Article  Google Scholar 

  37. Sundström L, Radström P, Swedberg G, Sweld O: Sitespecific recombination promotes linkage between trimethoprim-and sulfonamide resistance genes. Sequence characterization of dhfrV and sull and a recombination active locus of Tn21. Mol Gen Genet 213: 191–201 (1988).

    PubMed  Google Scholar 

  38. Swedberg G, Sköld O: Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. J Bact 153: 1228–1237 (1983).

    PubMed  Google Scholar 

  39. Thomas PS, Farquhar MN: Specific measurement of DNA in nuclei and nucleic acids using diaminobenzoic acid. Anal Biochem 89: 35–44 (1978).

    PubMed  Google Scholar 

  40. Van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Van Montagu M, Herrera-Estrella L: Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit to ribulose 1,5-bisphosphate carboxylase. Nature 313: 358–363 (1985).

    PubMed  Google Scholar 

  41. Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR: A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302 (1985).

    Google Scholar 

  42. Van Lijsebettens M, Inze D, Schell J, Van Montagu M: Transformed cell clones as a tool to study T-DNA integration mediated by Agrobacterium tumefaciens. J Mol Biol 188: 129–145 (1986).

    Article  PubMed  Google Scholar 

  43. Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK: Resistance to hygromycin B. A new marker for plant transformation studies. Plant Mol Biol 5: 103–108 (1985).

    Google Scholar 

  44. Wasmann CC, Reiss B, Bartlett SG, Bohnert HJ: The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol Gen Genet 205: 446–453 (1986).

    Google Scholar 

  45. WiseJr EM, Abou-Donia MM: Sulfonamide resistance mechanism in Escherichia coli: R Plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc Natl Acad Sci USA 72: 2621–2625 (1975).

    PubMed  Google Scholar 

  46. yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerineau, F., Brooks, L., Meadows, J. et al. Sulfonamide resistance gene for plant transformation. Plant Mol Biol 15, 127–136 (1990). https://doi.org/10.1007/BF00017730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017730

Key words

Navigation