Skip to main content
Log in

The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Root induction on flax (Linum usitatissimum L.) cotyledon explants by Agrobacterium rhizogenes strain 1855 is markedly increased by co-inoculation with disarmed A. tumefaciens strain LBA 4404 containing a plasmid carrying the tzs gene of pTiC58. Most of the roots (estimated to be more than 90%) were transformed. This effect is most likely due to the secretion of trans-zeatin by A. tumefaciens stimulating the division of plant cells making them more receptive to transformation by A. rhizogenes, although other explanations are possible. This observation supports the idea that the tzs gene, although not essential for transformation, may promote transformation. An obvious application for genetic engineering experiments involving transformation by A. rhizogenes, is to include a vir-induced tzs gene in the transformation system to help maximize transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt-Moerbe J, Neddermann P, Lintig J, Weiler EW, Schröder J: Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by agrobacteria. Mol Gen Genet 213: 1–8 (1988).

    Article  Google Scholar 

  2. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998 (1984).

    PubMed  Google Scholar 

  3. Akiyoshi DE, Regier DA, Gordon MP: Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169: 4242–4248 (1987).

    PubMed  Google Scholar 

  4. Barry GF, Roger SG, Fraley RT, Brand L: Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81: 4776–4780 (1984).

    Google Scholar 

  5. Beaty TS, Powell GK, Lica L, Regier DA, MacDonald EMS, Hommes NG, Morris RO: Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis. Mol Gen Genet 203: 274–280 (1986).

    Article  Google Scholar 

  6. Byrne MC, Koplow J, David C, Chilton M-D: Structure of T-DNA in roots transformed by Agrobacterium rhizogenes. J Mol Appl Genet 2: 201–209 (1983).

    PubMed  Google Scholar 

  7. Buchmann I, Marner FJ, Schröder G, Waffenschmidt S, Schröder J: Tumour genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853–859 (1985).

    Google Scholar 

  8. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW: Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown-gall tumorigenesis. Cell 11: 263–271 (1977).

    Article  PubMed  Google Scholar 

  9. Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J: Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295: 432–434 (1982).

    Google Scholar 

  10. Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone Costantino P: Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209: 475–480 (1987).

    Article  Google Scholar 

  11. DeCleene M, DeLey J: The host range of crown gall. Bot Rev 42: 389–466 (1976).

    Google Scholar 

  12. DeCleene M, DeLey J: The host range of infectious hairy root. Bot Rev 47: 147–194 (1981).

    Google Scholar 

  13. DeCleen M: The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath Z 113: 81–89 (1985).

    Google Scholar 

  14. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  15. Ellis JG, Ryder MH, Tate ME: Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195: 466–473 (1984).

    Article  Google Scholar 

  16. Farrand SK, Slota JE, Shim J-S, Kerr A: Tn5 insertions in the agrocin 84 plasmid: The conjugal nature of pAgK84 and the location of determinants for transfer and agrocin 84 production. Plasmid 13: 106–117 (1985).

    PubMed  Google Scholar 

  17. Filetici P, Spano L, Costantino P: Conserved regions in the T-DNA of different Agrobacterium rhizogenes root-inducing plasmids. Plant Mol Biol 9: 19–26 (1987).

    Google Scholar 

  18. Hain R, Stabel P, Czernilofsky AP, Steinbiss HH, Herrera-Estrella L, Schell J: Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol Gen Genet 199: 161–168 (1985).

    Article  Google Scholar 

  19. Hernalsteens JP, Thia-Toong L, Schell J, VanMontagu M: An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039–3041 (1984).

    Google Scholar 

  20. Hille J, VanKan J, Schilperoot RA: Trans-acting virulence functions of the octopine Ti plasmid from Agrobacterium tumefaciens. J Bacteriol 158: 754–756 (1986).

    Google Scholar 

  21. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A: Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98: 477–484 (1977).

    Google Scholar 

  22. Hooykaas PJJ, Hofker M, DenDulk-Ras H, Schilperoort RA: A comparison of virulence determinants in an octopine Ti-plasmid, a nopaline Ti-plasmid and an Ri-plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11: 195–205 (1984).

    PubMed  Google Scholar 

  23. Hooykaas-van Slogteren GMS, Hooykaas PJ, Schilperoort RA: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764 (1984).

    Google Scholar 

  24. Huffman GA, White FF, Gordon MP, Nester EW: Hairy-root-inducing plasmid: Physical map and homology to tumor-inducing plasmid. J Bacteriol 157: 269–276 (1984).

    PubMed  Google Scholar 

  25. Inzé DA, VanLijsebettens FM, Simoens C, Genetello C, VanMontagu M, Schell J: Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens: further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194: 265–274 (1984).

    Google Scholar 

  26. John MC, Amasino RM: Expression of an Agrobacterium Ti plasmid gene involved in cytokinin biosynthesis is regulated by virulence loci and induced by plant phenolic compounds. J Bacteriol 170: 790–795 (1988).

    PubMed  Google Scholar 

  27. Joos H, Inzé D, Caplan A, Sormann M, VanMontagu M, Schell J: Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067 (1983).

    PubMed  Google Scholar 

  28. Liu S-T, Perry KL, Schardl CL, Kado CL: Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc Natl Acad Sci USA 79: 2812–2816 (1982).

    Google Scholar 

  29. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  30. Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1972).

    Google Scholar 

  31. Murashige T, Skoog F: A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  32. Ooms G, Hooykaas JJ, VanVeen RJM, Beelen PV, Regensburg-Tuïnk TJG, Schilperoort RA: Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7: 15–29 (1982).

    PubMed  Google Scholar 

  33. Peralta EG, Hellmiss R, Ream R: Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumor-inducing plasmid. EMBO J 5: 1137–1142 (1986).

    Google Scholar 

  34. Pomponi M, Spanò L, Sabbadini MG, Costantino P: Restriction endonuclease mapping of the root inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 10: 119–129 (1983).

    PubMed  Google Scholar 

  35. Pythould F, Sinker VP, Nester EW, Gordon MP: Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo542: Application of genetic engineering of poplar. Bio/technology 5: 1323–1327 (1987).

    Google Scholar 

  36. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI: Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169: 4242–4248 (1987).

    PubMed  Google Scholar 

  37. Schmülling T, Schell J, Spena A: Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629 (1988).

    Google Scholar 

  38. Schröder G, Waffenschmidt S, Weiler EW, Schröder J: The T-region of Ti-plasmid codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391 (1983).

    Google Scholar 

  39. Spanò L, Pomponi M, Costantino P, VanSlogteren GMS, Tempé J: Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1: 291–300 (1982).

    Google Scholar 

  40. Spanò L, Mariotti D, Pezzotti M, Damiani F, Arcioni S: Hairy root transformation in alfafa (Medicago sativa L.). Theor Appl Genet 73: 523–530 (1987).

    Google Scholar 

  41. Stachel SE, Messens E, VanMontagu M, Zambryski P: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629 (1985).

    Google Scholar 

  42. VanHaaren MJJ, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Overdrive is a T-region transfer enhancer which stimulates T-strand production in A. tumefaciens. Nucl Acids Res 15: 8983–8997 (1987).

    PubMed  Google Scholar 

  43. VanLarebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, VanMontagu M: Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255: 742–743 (1975).

    PubMed  Google Scholar 

  44. White FF, Ghidossi G, Gordon MP, Nester EW: Tumor induction by Agrobacterium rhizogenes involes the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79: 3193–3197 (1982).

    Google Scholar 

  45. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164: 33–44 (1985).

    PubMed  Google Scholar 

  46. Zhan X, Jones DA, Kerr A: Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol Biol 11: 551–559 (1988).

    Google Scholar 

  47. Zhan X, Jones DA, Kerr A: Regeneration of shoots on root explants of flax. Ann Bot 63: 297–299 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, X., Jones, D.A. & Kerr, A. The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes . Plant Mol Biol 14, 785–792 (1990). https://doi.org/10.1007/BF00016511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016511

Key words

Navigation