Skip to main content
Log in

Microbial influence on gene-for-gene interactions in legume-Rhizobium symbioses

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Recent advances in our understanding of the molecular genetics of legume-Rhizobium symbioses have indicated that relatively few bacterial genes are required for nodulation. While some of these genes are functionally similar and shared among microsymbionts nodulating genetically diverse legumes, others appear to encode host-specific nodulation (hsn) functions which allow for nodulation of plants within a given legume genus. More recently, genotype-specific nodulation (GSN) determinants have been identified in R. leguminosarum bv. viceae strain TOM and in B. japonicum strain USDA 110. GSN determinants refer to those bacterial sequences that allow for nodulation of specific plant genotypes within a given legume species. In contrast to the avr loci of several plant pathogens, rhizobia host-range determinants (hsn and GSN) have been shown to positively affect nodulation. That is, the introduction of exogenous hsn and GSN loci extends host-range. Since GSN loci have been reported to interact with single host plant alleles, it suggests that gene-for-gene interactions occur in rhizobial-legume symbioses and contribute to nodulation specificity at the host genotype level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banfalvi Z, Nieuwkoop A, Schell M, Besl L and Stacey G 1988 Regulation of nod gene expression in Bradyrhizobium japonicum. Mol. Gen. Genet. 214, 420–424.

    Google Scholar 

  • Brewin N J, Beringer J E and Johnston A W B 1980 Plasmid mediated transfer of host range specificity between two strains of Rhizobium leguminosarum. J. Gen. Microbiol. 128, 1817–1827.

    Google Scholar 

  • Cregan P B and Keyser H H 1986 Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123 in soybean. Crop Sci. 26, 911–916.

    Google Scholar 

  • Cregan P B, Keyser H H and Sadowsky M J 1988 Soybean genotypes which reduce the competitiveness of strains of Bradyrhizobium japonicum serocluster 123. In Nitrogen Fixation: Hundred Years After. p. 782. Gustav Fischer Verlag, N.Y.

    Google Scholar 

  • Cregan P B, Keyser H H and Sadowsky M J 1989a A soybean genotype that restricts nodulation of a previously unrestricted isolated of Bradyrhizobium japonicum serocluster 123. Crop Sci. 29, 307–312.

    Google Scholar 

  • Cregan P B, Keyser H H and Sadowsky M J 1989b The use of host × strain incompatibilities in soybean to restrict nodulation of indigenous strains of Bradyrhizobium japonicum. In Proc. World Soybean Res. Conf. IV. Ed. A J Pascale. pp 1131–1137.

  • Crute I R 1986 Investigations of gene-for-gene relationships: the need for genetic analyses of both host and parasite. Plant Pathol. 35, 15–17.

    Google Scholar 

  • Davis E O, Evans I J and Johnston A W B 1988 Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viceae strain TOM to nodulate Afghanistan peas. Mol. Gen. Genet. 212, 531–535.

    Google Scholar 

  • Debelle F, Rosenberg C, Vasse J, Maillet F, Martinez E, Denarie J and Truchet 1986 Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J. Bacteriol. 168, 1075–1086.

    Google Scholar 

  • Denarie J, Boistard P, Casse-Delbart F, Atherley A G, Berry J O and Russell P 1981 Indigenous plasmids of Rhizobium. In International Review of Cytology, Supplement 13. Eds. G HBourne and J FDanielle. pp 225–246. Academic Press, New York.

    Google Scholar 

  • Djordjevic M A, Gabriel D W and Rolfe B G 1987 Rhizobium — the refined parasite of legumes. Annu. Rev. Phytopathol. 25, 145–168.

    Google Scholar 

  • Djordjevic M A, Redmond J W, Batley M and Rolfe B G 1987 Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6, 1173–1179.

    Google Scholar 

  • Djordjevic M A, Schofield P R and Rolfe B G 1985 Tn5 mutagenesis of Rhizobium trifolii host-specific nodulation genes results in mutants with altered host-range ability. Mol. Gen. Genet. 200, 463–471.

    Google Scholar 

  • Egelhoff T T, Fisher R F, Jacobs T W, Mulligan J T and Long S R 1985 Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4, 241–248.

    Google Scholar 

  • Firmin J L, Wilson K E, Rossen L and Johnston A W B 1986 Flavanoid activation of nodulation genes in Rhizobium is reversed by other compounds present in plants. Nature 324, 90–92.

    Google Scholar 

  • Fisher R F, Egelhoff T T, Mulligan J T and Long S R 1988 Specific binding of proteins from Rhizobium meliloti cell-free extracts containing nodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 2, 282–293.

    Google Scholar 

  • Flor H H 1946 Genetics of pathogenicity in Melamspora lini. J. Agric. Res. 73, 335–357.

    Google Scholar 

  • Flor H H 1956 The complementary genetic systems in flax and flax rust. Adv. Genet. 8, 29–54.

    Google Scholar 

  • Flor H 1971 Current status of the gene-for-gene concept. Annu. Rev. Phytopath. 9, 275–296.

    Google Scholar 

  • Gotz R, Evans I J, Downie J A and Johnston A W B 1985 Identification of the host-range DNA which allows Rhizobium leguminosarum strain TOM to nodulate cv. Afghanistan peas. Mol. Gen. Genet. 201, 296–300.

    Google Scholar 

  • Hahn M and Hennecke H 1988 Cloning and mapping of a novel nodulation region from Bradyrhizobium japonicum by genetic complementation of a deletion mutant. Appl. Environ. Microbiol. 54, 55–61.

    Google Scholar 

  • Heron D S, Ersek T, Krishan H B and Pueppke S G 1989 Nodulation mutants of Rhizobium fredii USDA 257. Molec. Plant-Microbe Interact. 2, 4–10.

    Google Scholar 

  • Holl F B 1975 Host plant control of the inheritance of dinitrogen fixation in the Pisum-Rhizobium symbiosis Euphytica 24, 767–770.

    Google Scholar 

  • Hong G-F, Burn J E and Johnston A W B 1987 Evidence that DNA involved in the expression of nodulation (nod) genes in Rhizobium binds to the regulatory gene nodD. Nucl. Acids Res. 15, 9677–9690.

    Google Scholar 

  • Horvath B, Bachem C W B, Schell J and Kondorosi A 1987 Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant signal, interacting with the nodD gene product. EMBO J. 6, 841–848.

    Google Scholar 

  • Horvath B. Kondorosi E. John M, Schmidt J. Torok I. Gyorgypal Z, Barabas I, Wieneke U, Schell J and Kondorosi A 1986 Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46, 335–343.

    Google Scholar 

  • Keen N T 1982 Specific recognition in gene-for-gene host parasite systems. Adv. Plant Pathol. 1, 35–82.

    Google Scholar 

  • Keen N T and Staskawicz, B 1988 Host-range determinants in plant phatogens and symbionts. Annu. Rev. Microbiol. 42, 421–440.

    Google Scholar 

  • Keyser H H and Cregan P B 1987 Nodulation and competition for nodulation of selected soybean genotypes among Bradyrhizobium japonicum serogroup 123 isolates. Appl. Environ. Microbiol. 53, 2631–2635.

    Google Scholar 

  • Kondorosi E, Banfalvi Z and Kondorosi A 1984 Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identification of nodulation genes. Mol. Gen. Genet. 193, 445–452.

    Google Scholar 

  • Kondorosi A and Johnston A W B 1981 The genetics of Rhizobium. In International Review of Cytology, Supplement 13. Eds. G HBourne and J FDanielle. pp 191–224. Academic Press, New York.

    Google Scholar 

  • Kosslak R M, Bookland R, Barkei J, Paaren H E and Appelbaum E R 1987 Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA 84, 7428–7432.

    Google Scholar 

  • Lamb J W and Hennecke H 1986 In Bradyrhizobium japonicum the common nodulation genes nod-ABC are linked to Nif-A and Fix-A. Mol. Gen. Genet. 202, 512–517.

    Google Scholar 

  • Leroux B, Yanofsky M F, Winans S C, Ward J E, Ziegler S F and Nester E W 1987 Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host-range determinant. EMBO J. 6, 849–856.

    Google Scholar 

  • Long S R 1984 The genetics of Rhizobium nodulation In Plant Microbe Interactions. Eds. Kosuge and E WNester. pp 265–306. Macmillan Pub. Co. New York.

    Google Scholar 

  • Long S R 1989 Rhizobium-legume nodulation: life together in the underground. Cell 56, 203–214.

    Google Scholar 

  • Mukherjee D, Lambert J, Cooper R and Kennedy B 1966 Inheritance of resistance to bacterial blight of soybeans. Crop Sci. 6, 324–326.

    Google Scholar 

  • Nieuwkoop A J, Banfalvi Z, Deshmane N, Gerhold D, Schell M G, Sirotkin K M and Stacey G 1987 A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J. Bacteriol. 169, 2631–2638.

    Google Scholar 

  • Peters K, Frost J W and Long S R 1986 A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 917–1008.

    Google Scholar 

  • Rossen, L Johnston A W B and Downie A 1984 DNA sequence of the Rhizobium leguminosarum nodulation genes AB and C required for root hair curling. Nucl. Acids Res. 12, 9497–9508.

    Google Scholar 

  • Rostas K, Kondorosi E, Horvath B, Simoncsits A and Kondorosi A 1986 Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc. Natl. Acad. Sci. USA 83, 1757–1761.

    Google Scholar 

  • Russell P, Schell M G, Nelson K K, Halverson L J, Sirotkin K M and Stacey G 1985 Isolation and characterization of a DNA region encoding nodulation functions in Bradyrhizobium japonicum. J. Bacteriol. 164, 1301–1308.

    Google Scholar 

  • Sadowsky M J and Bohlool B B 1983 Possible involvement of a megaplasmid in nodulation of soybeans by fast-growing rhizobia from China. Appl. Environ. Microbiol. 46, 906–911.

    Google Scholar 

  • Sadowsky M J and Bohlool B B 1985 Differential expression of the pea symbiotic plasmid, pJB5JI, in genetically dissimilar backgrounds. Symbiosis 1, 125–138.

    Google Scholar 

  • Sadowsky M J, Olson E R, Foster V E, Kosslak R M and Verma D P S 1988 Two host-inducible genes of Rhizobium fredii and the characterization of the inducing compound. J. Bacteriol. 170, 171–178.

    Google Scholar 

  • Sadowsky M J, Tully R E, Cregan P B and Keyser H H 1987 Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53, 2624–2630.

    Google Scholar 

  • Schofield P R and Watson J M 1986 DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and FE. Nucl. Acids Res. 14, 2891–2903.

    Google Scholar 

  • Shearman C A, Rossen L, Johnston A W B and Downie J A 1986 The Rhizobium leguminosarum nodulation gene nodF encodes a polypeptide similar to acyl carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5, 647–652.

    Google Scholar 

  • Spaink H P, Wijffelman C A, Pees E, Okker R J H and Lugtenberg, B J J 1987 Rhizobium leguminosarum nodulation gene nodD as a determinant of host specificity. Nature 328, 337–340.

    Google Scholar 

  • Stacey G 1988 Genetics of symbiotic nitrogen fixation. In The Impact of Chemistry on Biotechnology-Multidisciplinary Discussions. Eds. MPhillips, S PShoemaker, R DMiddlekauff and R MOttenbrite. pp 262–278. American Chemical Society, Washington, DC.

    Google Scholar 

  • Staskawicz B J, Dahlbeck D and Keen N 1984 Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc. Natl. Acad. Sci. USA 81, 6024–6028.

    Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N and Napoli C 1987 Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169, 5789–5794.

    Google Scholar 

  • Torok I, Kondorosi E, Stepkowski T, Posfai J and Kondorosi A 1984 Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucl. Acids Res. 12, 9509–9524.

    Google Scholar 

  • Vest G and Caldwell B E 1972 Rj4 — A gene conditioning ineffective nodulation in soybean. Crop Sci. 12, 692–693.

    Google Scholar 

  • Yanofksy M F and Nester E W 1986 Molecular characterization of a host-range determining locus from Agrobacterium tumefaciens. J. Bacteriol. 168, 244–250.

    Google Scholar 

  • Zaat S A, Wijffelman C A, Spaink H P, VanBrussel A A N, Okker R J H and Lugtenberg B J J 1987 Induction of the nodA promoter of Rhizobium leguminosarum Sym plasmid pRL1J1 by plant flavanones and flavones. J. Bacteriol. 169, 198–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadowsky, M.J., Cregan, P.B., Rodriguez-Quinones, F. et al. Microbial influence on gene-for-gene interactions in legume-Rhizobium symbioses. Plant Soil 129, 53–60 (1990). https://doi.org/10.1007/BF00011691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00011691

Key words

Navigation