Skip to main content
Log in

Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Planktonic algae are not abundant in the brackish waters of San Francisco Bay-estuary (mean chlorophyll a 5 µg 1−1), despite the high level of nutrients usually present due to the input of treated sewage from 3 million people. Macroalgae (seaweeds) are sometimes locally abundant in the Bay. Phytoplankton are abundant (chlorophyll a > 50 µg 1−1) and seaweeds uncommon in the almost freshwater Delta and upper estuary despite lower nutrient levels. Direct competition between these algal groups could explain the observed distributions.

Given the size of the algae, large containers were needed for the determination of possible resource competition. Experiments were carried out in flow-through mesocosms (analog tanks) of 3 m3 volume. The macroalgae Ulva lactuca or Gigartina exasperata and a diatom-dominated phytoplankton, all from San Francisco Bay, were grown separately and together and with and without treated sewage effluent or other artificial nutrient additions. When grown alone phytoplankton and macroalgae were greatly stimulated by wastewater addition to unmodified baywater. The phytoplankton grew much more slowly in the presence of natural densities of Ulva. Allelochemical effects were tested for but not demonstrated.

Resource competition for inorganic nitrogen was determined to be the probable cause of the depression of phytoplankton by Ulva. At its rapid growth rates in the flow-through mesocosms (up to 14% day−1) this macroalga can reduce inorganic nitrogen to low levels. Ulva has a greater affinity (lower KS) for nitrogen than do some of the plankton of the Bay. Ulva may outcompete phytoplankton by reducing nitrogen to levels below those capable of supporting phytoplankton growth. Other macroalgae such as Gigartina and Enteromorpha need to be studied to determine if they also can depress phytoplankton growth by resource competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asare, S. O. & M. M. Harlin, 1983. Seasonal fluctuations in tissue nitrogen for five species of perennial macroalgae in Rhode Island Sound. J. Phycol. 19: 254–257.

    Google Scholar 

  • Bain, R. C. & L. N. Hoag, 1965. Nutrient-productivity studies in San Francisco Bay. U.S. Publ. Health Serv. Tech. Rept., 65–1.

  • Blinks, L. R., 1955. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14: 363–373.

    Google Scholar 

  • Brown, E. J. & D. K. Button, 1979. Phosphate-limited growth kinetics of Selenastrum capricornutum (Chlorophyceae). J. Phycol. 15: 305–311.

    Google Scholar 

  • Carpenter, E. J. & R. R. L. Guillard, 1971. Interspecific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology. 52: 183–185.

    Google Scholar 

  • Cloern, J. E., 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay? Mar. Ecol. Prog. Ser. 9: 191–202.

    Google Scholar 

  • Cloern, J. E., 1984. Temporal dynamics and ecological significance of salinity stratification in an estuary (South San Francisco Bay). Oceanol. Acta. 7: 137–141.

    Google Scholar 

  • Cloern, J. E., B. E. Cole, R. L. J. Wong & A.E.Alpine, 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay. Hydrobiologia, 129: 153–176.

    Google Scholar 

  • Duke, C. S., B. E. Lapointe & J. Ramus, 1986. Effects of light on growth, RuBPCase activity and chemical composition of Ulva species (Chlorophyta). J. Phycol. 22: 362–370.

    Google Scholar 

  • Eppley, R. W., J. N. Rogers & J. J. McCarthy, 1969. Halfsaturation constants for uptake of nitrate and ammonia by marine phytoplankton. Limnol. Oceangr. 14: 912–920.

    Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. J. Phycol. 5: 351–359.

    Google Scholar 

  • Gawler, M. D. & A. J. Horne, 1985. Photosynthesis-light relations in the shoals of San Francisco Bay. Verh. Int. Ver. Limnol. 22: 2183–2189.

    Google Scholar 

  • Goldman, C. R. & A. J. Horne, 1983. Limnology. Mcgraw-Hill. 462 pp.

  • Harris, O. D., 1971. Growth inhibitors produced by the green algae (Volvocaecae). Arch. Mikrobiol. 76: 47–50.

    Google Scholar 

  • Holm, N. P. & D. E. Armstrong, 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26: 622–634.

    Google Scholar 

  • Holm-Hansen, O. & B. Rieman, 1978. Chlorophyll a determination: Improvements in methodology. Oikos. 30: 438–447.

    Google Scholar 

  • Horne, A. J. & W. J. Kaufman, 1974. Long-term effects of toxicants and biostimulants in the waters of San Francisco Bay. Univ. California (Berkeley) Sanitary Eng. Envir. Health Res. Lab. Rept. 73–1. 112 pp.

  • Horne, A. J. & A. Nonomura,1976. Drifting macroalgae in estuarine waters: Interactions with salt marsh and human communities. Univ. California (Berkeley) Sanitary Eng. Envir. Health Res. Lab. Rept. 76–3, 76 pp.

  • Horne, A. J. & S. J. McCormick, 1977. An assessment of eutrophication in San Francisco Bay. Report to the Assoc. Bay Area Governments, Berkeley. 96 p.

  • Horne, A. J., M. Bennett, R. Valentyne, R. E.Selleck, P. P.Russell & P.Wilde, 1983. The effects of chlorination of wastewaters on juvenile Dungeness Crabs in San Francisco Bay waters. Fish Bull. (Calif.)172: 215–225.

    Google Scholar 

  • Horne, A. J., J. C. Roth & D. W. Smith, 1985. The long-term monitoring of phytoplankton, zooplankton, and primary production in San Francisco Bay. Univ. California (Berkeley) Sanitary Eng. Envir. Health Res. Lab. Rept. 85–1. 130 p.

  • Jenkins, D., W. J. Kaufman, P. H. McGauhey, A. J. Horne & J. Gasser, 1973. Environmental impact of detergent builders in California waters. Water Research. 7: 256–281.

    Google Scholar 

  • Josselyn, M. N. & J. A. West, 1985. The distribution and temporal dynamics of the estuarine macroalgal community of San Francisco Bay. Hydrobiologia. 129: 139–152.

    Google Scholar 

  • Kautsky, L., 1982. Primary production and uptake of ammonium and phosphate by Enteromorpha compressa in an ammonium sulfate industry outlet area. Aquat. Bot. 12: 23–40.

    Google Scholar 

  • Lapointe, B. E. & K. R. Tenore, 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J. Exp. Mar. Biol. Ecol. 53: 135–152.

    Google Scholar 

  • Lapointe, B. E. & C. S. Duke, 1984. Biochemical stratagies for growth of Gracillaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J. Phycol. 20: 488–495.

    Google Scholar 

  • Larsson, U., R. Elmgren & F. Wulff, 1985. Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14: 9–14.

    Google Scholar 

  • Manley, S. M. & W. J. North, 1984. Phosphorus and the growth of juvenile Macrocystis pyrifera (Phaeophyta) sporophytes. J. Phycol. 20: 389–393.

    Google Scholar 

  • Marshall, S. M. & A. P. Orr, 1948. Further experiments on the fertilization of a sea loch (Loch Craiglin). J. Mar. Biol. Assoc. U.K. 27: 360–379.

    Google Scholar 

  • Nutall, P. M., 1985. Uptake of phosphorus and nitrogen by Myriophyllum aquaticum (Velloza) Verd. growing in a wastewater treatement system. Aust. J. Mar. Freshwat. Res. 36: 493–507.

    Google Scholar 

  • Pasciak, W. J. & J. Gavis, 1974. Transport limitations of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19: 881–888.

    Google Scholar 

  • Peterson, D. H., R. E. Smith, S. W. Hager, D. D. Harmon, R. E.Herndon & L. E.Schmel, 1985. Interannual variability in dissolved inorganic nutrients in Northern San Francisco Bay. Hydrobiologia 129: 37–58.

    Google Scholar 

  • Powell, T. P., J. E. Cloern & R. A. Waters, 1986. Phytoplankton spatial distribution in South San Francisco Bay: Mesoscale and small-scale variability. In D. A. Wolfe (ed.), Estuarine Variability. Academic Press. 369–383.

  • Romeo, A. J. & N. S. Fisher, 1982. Interspecific comparisons of nitrate uptake in three marine diatoms. J. Phycol. 18: 220–225.

    Google Scholar 

  • Roth, J. C., D. W. Smith & A. J. Horne, 1983. Dilution-field bioassays for local effects monitoring of wastewater discharges into San Francisco Bay. I. A demonstration study of biostimulation based on the growth of aufwuchs on artificial substrates. Univ. California (Berkeley) Sanitary Eng. Envir. Health Res. Lab. Rept. 83–1. 34 pp.

  • Roth, J. C., R. L. Williamson, A. J. Horne, D. W. Smith & M. L. Commins, 1984. Dilution-field bioassays for local effects monitoring of wastewater discharges into San Francisco Bay. II. A demonstration study of toxicity based on the growth and condition of caged mussels (Mytilus edulis). Univ. California (Berkeley) Sanitary Eng. Envir. Health Res. Lab. Rept. 84–1. 79 pp.

  • Seliger, H. H., J. A. Boggs & W. H. Biggley, 1985. Catastrophic anoxia in the Chesapeake Bay in 1984. Science 228: 70–73.

    Google Scholar 

  • Smith, D. W., 1984. Responses of aufwuchs, phytoplankton and macrophytes to municipal and industrial wastes in San Francisco Bay. Ph.D. Thesis. Univ. California, Berkeley, 174 pp.

    Google Scholar 

  • Steffensen, D. A., 1976. The effect of nutrient enrichment and temperature on the growth in culture of Ulva latuca L. Aquat. Bot. 2: 334–351.

    Google Scholar 

  • Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. In M. S. Doty (ed.), Proc. Conf. Primary Prod. Measur. Mar, Freshwat. USAEC TID-7633: 142–146.

  • Tilman, D. & S. S. Kilham, 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375–383.

    Google Scholar 

  • U. S. Geological Survey, 1979. Physical and chemical properties of San Francisco Bay waters, 1969–1076. Open-file Rept., 79–511.

  • Waite, T. & R. Mitchell, 1972. Effect of nutrient fertilization on the benthic alga Ulva latuca. Bot. Mar. 15: 151–156.

    Google Scholar 

  • Welsh, B. L., 1980. Comparative dynamics of a marsh-mudflat ecosystem. Est. Coast Mar. Sci. 10: 143–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.W., Horne, A.J. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia 159, 259–268 (1988). https://doi.org/10.1007/BF00008239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008239

Key words

Navigation