Skip to main content
Log in

Phytoplankton distributions observed during a % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaali% aabaGaaGymaaqaaiaaikdaaaaaaa!3833!\[3{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] days fixed-station in the lower St. Lawrence Estuary

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton biomass and species composition distributions, and the associated variability in the physiological vigor of the mixed populations, were described during a % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaali% aabaGaaGymaaqaaiaaikdaaaaaaa!3833!\[3{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] days fixed-station study in the Lower St. Lawrence Estuary. The relative constancy in the temperature-salinity curves, and the current meter data, suggest that a single water mass of complex surface structure on a spatial scale of tens of kilometers was being observed during the % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaali% aabaGaaGymaaqaaiaaikdaaaaaaa!3833!\[3{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] days fixed-station observations. The species composition was relatively constant but in the peak biomass samples the dominance of net plankton, two species of Thalassisira, was evident. At a surface discontinuity in S‰, pennate diatoms and flagellates dominated. Power and coherency spectra of the temperature, S% and chlorophyll a time series suggest that the biomass distributions are a function of physical rather than biological processes over the scale observer (10−2 to 102 cycle per h). There was strong variability in the esturary at intermediate scales (hours, kilometers) in biomass, primary production and the derived parameters. The major features of the latter distributions (production/biomass ratios and carbon/chlorophyll ratio) were associated with species composition differences. The relative constancy in species composition over tens of kilometers is discussed in relation to other pelagic environments. The highly turbulent nature of estuaries and the frequency at which energy enters the environment in relation to the time necessary for differentiation of species composition suggests that niche diversity in this environment may be low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, F. A. J. & LaFond, E. C. 1966. Chemical nutrient concentrations and their relationships to internal waves and turbidity off Southern California. Limnol. Oceanogr. 11: 538–547.

    Article  CAS  Google Scholar 

  • Bowden, K. F. 1967. Circulation and diffusion. In: Lauff, G. H. (ed.), Estuaries, AAAS, pp. 15–36.

  • Cannon, G. A. 1971. Statistical characteristics of velocity fluctuations at intermediate scales in a coastal plain estuary. J. Geophys. Res. 76: 5852–5858.

    Article  Google Scholar 

  • Denman, K. L. 1976. Covariability of chlorophyll and temperature in the sea. Deep Sea. Res. 23: 539–550.

    Google Scholar 

  • Denman, K. L. & Platt, T. 1976. The variance spectrum of phytoplankton in a turbulent ocean. J. Mar. Res. 34: 593–601.

    Google Scholar 

  • Elton, C. S. 1966. The pattern of animal communities. John Wiley and Sons Inc., New York, 432 p.

    Google Scholar 

  • Fasham, M. J. & Pugh, P. R. 1976. Observations on the horizantal coherence of chlorophyll a and temperature. Deep Sea Res. 23: 527–538.

    Google Scholar 

  • Holm-Hansen, O. 1970. ATP levels in algal cells as influenced by environmental conditions. Plant. Cell Physiol. 11: 689–700.

    CAS  Google Scholar 

  • Huffaker, C. B. 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 343–383.

    Article  Google Scholar 

  • Jenkins, G. M. & Watts, D. G. 1968. Spectral analysis and its applications. Holden-Day, San Francisco, 525 p.

    Google Scholar 

  • Kamykowski, D. 1974. Possible interaction between phytoplankton and semidiurnal internal tides. J. Mar. Res. 32: 67–89.

    Google Scholar 

  • Kiersted, H. & Slobodkin, L. B. 1953. The size of water masses containing plankton blooms. J. Mar. Res. 12: 141–147.

    Google Scholar 

  • Lasker, R. 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maxima layers and successful first feeding. Fish. Bull. U.S. 73: 453–462.

    Google Scholar 

  • Lund, J. W. G., Kipling, C. & LeCren, E. D. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Margalef, R. 1973. Some critical remarks on the usual approaches to ecological modelling. Inv. Pesq. 37: 621–640.

    Google Scholar 

  • May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, 235 pp.

  • McAllister, C. D., Shah, N. & Strickland, J. D. H. 1964. Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. J. Fish. Res. Bd. Canada 21: 159–181.

    Article  CAS  Google Scholar 

  • Mullin, M. M. & Brooks, E. R. 1976. Some consequencies of distributional heterogeneity of phytoplankton and zooplankton. Limnol. Oceanogr. 21: 784–796.

    Article  Google Scholar 

  • Nihoul, J. C. J. (ed.) 1975. Modelling of marine systems. Elsevier Oceanography series, # 10, Amsterdam, 272 p.

  • Ozmidov, R. V. 1966. The scales of oceanic turbulence. Oceanology 6: 325–328.

    Google Scholar 

  • Platt, T. 1972. Local phytoplankton abundance and turbulence. Deep Sea Res. 19: 183–188.

    Google Scholar 

  • Platt, T. & Denman, K. L. 1975. A general equation of for the mesoscale distribution of phytoplankton in the sea. Mem. Soc. R. Sci. Liége 7: 31–42.

    Google Scholar 

  • Platt, T. & Filion, C. 1973. Spatial variability of the productivity/biomass ratio for phytoplankton in a small marine basin. Limnol. Oceanogr. 18: 743–749.

    Article  Google Scholar 

  • Powell, T. M., Richerson, P. J., Dillon, T. M., Agee, B. A., Dozier, B. J., Godden, D. A. & Myrup, L. O. 1975. Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe. Science 189: 1088–1090.

    Article  CAS  PubMed  Google Scholar 

  • Richerson, P., Armstrong, R. & Goldman, C. R. 1970. Contemporaneous disequilibrium, an new hypothesis to explain the ‘paradox of the plankton’. Proc. Nat. Acad. Sci., U.S.A. 67: 1710–1714.

    Article  CAS  Google Scholar 

  • Riley, G. A. 1976. A model of plankton patchiness. Limnol. Oceanogr. 21: 873–880.

    Article  Google Scholar 

  • Sakshaug, E. 1977. Limiting nutrients and maximum growth rates for diatoms in Narragansett Bay. J. Exp. Mar. Biol. Ecol. 28: 109–123.

    Article  CAS  Google Scholar 

  • Sheldon, R. W., Sutcliffe, Jr., W. H. & Prakash, A. 1973. The production of particles in the surface waters of the ocean with particular reference to the Sargasso Sea. Limnol. Oceanogr. 18: 719–733.

    Article  Google Scholar 

  • Sinclair, M. 1978. Summer phytoplankton variability in the lower St. Lawrence Estuary. J. Fish. Res. Board Can. 35: 1171–1181.

    Article  Google Scholar 

  • Sinclair, M., Keighan, E. & Jones, J. 1979. ATP as a measure of living phytoplankton carbon in estuaries. J. Fish. Res. Board Can. 36: 180–186.

    Article  CAS  Google Scholar 

  • Smith, F. E. 1972. Spatial heterogeneity, stability and diversity in ecosystems. Trans. Conn. Acad. Arts and Sci. 44: 307–335.

    Google Scholar 

  • Steele, J. H. 1974. Spatial heterogeneity and population stability. Nature 248: 83.

    Article  Google Scholar 

  • Steele, J. H. 1975. Biological modelling 11, p. 207–216. In: J. C. G. Nihoul (ed.), Modelling of Marine Systems. Elsevier Oceanography Series, # 10, Amsterdam.

  • Strickland, J. D. H. 1965. Production of organic matter in the primary stages of the marin food chain, p. 477–610. In: J. P. Riley and G. Skirrow (eds.), Chemical Oceanography, Vol. 1, Academic Press, London.

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada 167, Ottawa, 311 p.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, M., Chanut, J.P. & El-Sabh, M. Phytoplankton distributions observed during a % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaali% aabaGaaGymaaqaaiaaikdaaaaaaa!3833!\[3{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] days fixed-station in the lower St. Lawrence Estuary. Hydrobiologia 75, 129–147 (1980). https://doi.org/10.1007/BF00007426

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007426

Keywords

Navigation