Skip to main content
Log in

Nutrient enrichment experiments in three central Florida lakes of different trophic states

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO sup3−inf4 , Fe -EDTA, SiO sup2−inf3 and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.P.H.A., 1975. Standard Methods for the Examination of Water and Wastewater. 14th ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C. 1193 pp.

    Google Scholar 

  • Anderson, V. L. & R. A. McLean, 1974. Design of Experiments, A Realistic Approach. Marcel Dekker, N.Y. 418 pp.

    Google Scholar 

  • Baker, L. A., P. L. Brezonik & C. R. Kratzer, 1981. Nutrient loading-trophic state relationships in Florida lakes. Publ. 56, Fla. Wat. Resour. Res. Center, Gainesville. 126 pp.

    Google Scholar 

  • Canfield, D. E., Jr. & R. W. Bachmann, 1981. Prediction of total phosphorus concentrations, chlorophyll a and secchi depths in natural and artificial lakes. Can. J. Fish. aquat. Sci. 38: 414–423.

    Article  Google Scholar 

  • Carlson, R. E., 1977. Atrophic state index for lakes. Limnol. Oceanogr. 22: 361–369.

    CAS  Google Scholar 

  • Cowell, B. C., 1960. A quantitative study of the winter plankton of Urschel's Quarry. Ohio J. Sci. 60: 183–191.

    Google Scholar 

  • Cowell, B. C. & C. J. Dawes, 1984. Algae studies of eutrophic Florida lakes: the influence of aeration on the limnology of a central Florida lake and its potential as a lake restoration technique. Final Report, Fla. Dept. Nat. Resour., Tallahassee, 299 pp.

    Google Scholar 

  • Cowell, B. C., C. J. Dawes, W. E. Gardiner & S. M. Scheda, 1987. The influence of whole lake aeration on the limnology of a hypereutrophic lake in central Florida. Hydrobiologia 148: 3–24.

    Article  CAS  Google Scholar 

  • Dawes, C. J. & B. C. Cowell, 1984. Algal studies of eutrophic Florida lakes: Determination of factors responsible for nuisance blooms of planktonic algae in central Florida. Final Report. Fla. Dept. Nat. Resour., Tallahassee. 133 pp.

    Google Scholar 

  • Dawes, C. J., B. C. Cowell, W. E. Gardiner & S. M. Scheda, 1987. Limnological characteristics of two eutrophic and four mesotrophic lakes in west-central Florida. Int. Revue ges. Hydrobiol. 72: 171–203.

    CAS  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    CAS  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1975. A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd Can. 32: 1519–1531.

    Google Scholar 

  • Dunst, R. C., S. M. Born, P. D. Uttormark, S. A. Smith, S. A. Nichols, J. O. Peterson, D. R. Knauer, S. L. Kerns, D. R. Winter & T. L. Wirth, 1974. Survey of lake rehabilitation techniques and experiences. Tech. Bull. 75, Wisc. Dept. Nat. Resour., Madison. 179 pp.

    Google Scholar 

  • Edmondson, W. T., 1959. Methods and equipment. In W. T. Edmondson (ed.), Freshwater Biology. John Wiley and Sons, N.Y.: 1194–1202.

    Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.

    CAS  Google Scholar 

  • Hudson, P. L. & B. C. Cowell, 1966. Distribution and abundance of phytoplankton and rotifers in a main-stem Missouri River reservoir. Proc. S. D. Acad. Sci. 45: 84–106.

    Google Scholar 

  • Jones, J. R. & R. W. Bachmann, 1976. Prediction of phosphorus and chlorophyll levels in lakes. J. Wat. Pollut. Cont. Fed. 48: 2176–2182.

    CAS  Google Scholar 

  • Kalff, J. & R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475–495.

    Article  Google Scholar 

  • Lehman, J. T., D. B. Botkin & G. E. Likens, 1975. The assumptions and rationales of a computer model of phytoplankton dynamics. Limnol. Oceanogr. 20: 343–364.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    CAS  Google Scholar 

  • Nichols, H. W. & H. C. Bold, 1965. Trichosarcina polymorpha Gen. et Sp. Nov. J. Phycol. 1: 34–38.

    Google Scholar 

  • N.O.A.A., 1983. Climatological data for Florida. Natl. Atmos. Adm., Natl Climat. Center, Ashville, N.C., Vol. 87.

    Google Scholar 

  • Paine, R. T., 1980. Food webs: Linkage, interaction strength and community infrastructure. J. anim. Ecol. 49: 667–685.

    Google Scholar 

  • Robarts, R. D., 1987. Effect of rainstorms on heterotrophic bacterial activity in a hypereutrophic African lake. Hydrobiologia 148: 281–286.

    Article  Google Scholar 

  • Scheda, S. M. & B. C. Cowell, 1988. Rotifer grazers and phytoplankton: seasonal experiments on natural communities. Arch. Hydrobiol. 114: 31–44.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • SAS, 1985. SAS User's Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, N.C., 956 pp.

    Google Scholar 

  • Setaro, F. V. & J. M. Melack, 1984. Responses of phytoplankton to experimental nutrient enrichment in an Amazon floodplain lake. Limnol. Oceanogr. 29: 972–984.

    CAS  Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.

    Google Scholar 

  • Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101–1112.

    CAS  Google Scholar 

  • Smith, V. H. & J. Shapiro, 1981. Chlorophyll-Phosphorus relations in individual lakes. Their importance to lake restoration strategies. Envir. Sci. Technol. 15: 444–451.

    Article  CAS  Google Scholar 

  • Stenson, J. A. E., 1982. Fish impact on rotifer community structure. Hydrobiologia 87: 57–64.

    Article  Google Scholar 

  • U.S. EPA, 1979. Methods for chemical analysis of water and wastes. EPA 600/4–79–020. U.S. Envir. Prot. Ag., Cincinnati. 116 pp.

    Google Scholar 

  • U.S. EPA, 1982. Handbook for sampling and sample preservation of water and wastewater. EPA 600/4–82–029. U.S. Envir. Prot. Ag., Cincinnati. 402 pp.

    Google Scholar 

  • Verduin, J., 1960. Phytoplankton communities of western Lake Erie and the CO2 and O2 changes associated with them. Limnol. Oceanogr. 5: 372–380.

    Article  Google Scholar 

  • Vollenweider, R. A., 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84.

    CAS  Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st ital. Idrobiol. 33: 53–83.

    CAS  Google Scholar 

  • Wurtsbaugh, W. A., W. F. Vincent, R. Alfaro Tapia, C. L. Vincent & P. J. Richerson, 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshw. Biol. 15: 185–195.

    Article  CAS  Google Scholar 

  • Zaret, T. M., A. H. Devol & A. Dos Santos, 1981. Nutrient addition experiments in Lago Jacaretinga, central Amazon Basin, Brazil. Verh. int. Ver. Limnol. 21: 721–724.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowell, B.C., Dawes, C.J. Nutrient enrichment experiments in three central Florida lakes of different trophic states. Hydrobiologia 220, 217–231 (1991). https://doi.org/10.1007/BF00006578

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006578

Key words

Navigation