Skip to main content
Log in

The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sedimentary bacteria have generally been recognized as an essential food for protists and invertebrates, forming the base of benthic food webs. This trophic role has been well documented, but bacteria play an equally important role as mineralizers of organic detritus and recyclers of essential nutrients. Recent evidence suggests that this latter role is more important than their trophic function in tropical mangrove and coastal sediments. Bacteria in these systems are, on average, more abundant and productive than their counterparts in higher-latitude systems. They account for a disproportionate share of nutrient uptake to the extent that bacterial communities act as a sink for carbon, processing most of the energy and nutrients in tropical aquatic systems. Most bacteria remain unconsumed in tropical deposits, dying naturally and lysing, with the next generation of cells consuming, mineralizing and recycling this material either into new biomass or dissolved material. Bacteria in tropical aquatic sediments are ultimately controlled by inputs of dissolved and particulate detritus, natural mortality and recycling. To replenish damaged ecosystems in the tropics, restoration of the natural geochemical profile in the sediments is necessary to re-initiate the growth of bacteria in order to restore the essential recycling processes which assist in the conservation of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aller, J. Y. & R. C. Aller, 1986. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res 6: 291–310.

    Article  Google Scholar 

  • Alongi, D. M., 1988a. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb. Ecol. 15: 59–79.

    Google Scholar 

  • Alongi, D. M., 1988b. Microbial-meiofaunal interrelationships in some tropical intertidal sediments. J. Mar. Res. 46: 349–365.

    Google Scholar 

  • Alongi, D. M., 1989a. Benthic processes across mixed terrigenous-carbonate sedimentary facies on the central Great Barrier Reef continental shelf. Cont. Shelf Res. 9: 629–663.

    Article  Google Scholar 

  • Alongi, D. M., 1989b. The fate of bacterial biomass and production in marine benthic food chains. In: Hattori, T., Ishida, Y., Maruyama, Y., Molita, R. Y., Uchida, A. (eds), Recent Advances in Microbial Ecology, Japanese Scientific Societies Press, Tokyo: 353–359.

    Google Scholar 

  • Alongi, D. M., 1990. The ecology of tropical soft-bottom benthic ecosystems. Oceanogr. Mar. Biol. Annu. Rev. 28: 381–496.

    Google Scholar 

  • Alongi, D. M., 1991. The role of intertidal mudbanks in the diagenesis and export of dissolved and particulate materials from the Fly Delta, Papua New Guinea. J. exp. Mar. Biol. Ecol. 149: 81–107.

    Article  Google Scholar 

  • Alongi, D. M., 1992. Vertical profiles of bacterial abundance, productivity and growth rates in coastal sediments of the central Great Barrier Reef lagoon. Mar. Biol. 112: 657–663.

    Google Scholar 

  • Alongi, D. M., K. G. Boto & F. Tirendi, 1989. Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical nearshore sediments. Mar. Ecol. Prog. Ser. 56: 129–140.

    Google Scholar 

  • Alongi, D. M., P. Christoffersen, F. Tirendi & A. I. Robertson, 1992. The influence of freshwater and material export on sedimentary facies and benthic processes within the Fly Delta and adjacent Gulf of Papua (Papua New Guinea). Cont. Shelf Res. 12: 287–326.

    Article  Google Scholar 

  • Ayyakkannu, K. & D. Chandramohan, 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatose in marine sediments at Porto Novo. Mar. Biol. 11: 201–210.

    Article  Google Scholar 

  • Blackburn, T. H., 1988. Benthic mineralization and bacterial production In: Blackburn, T. H., Sorensen, J. (eds), Nitrogen Cycling in Coastal Marine Environments, Wiley & Sons, Chichester. 175–190.

    Google Scholar 

  • Blackburn, T. H., D. Christensen, A. M. Fanger, K. Henriksen, H. Iiyumi, N. Iversen & P. Limpsaichol, 1987. Mineralization processes in mangrove and seagrass sediments. In: Hylleberg, J., (ed.), Ao Yon — a mangrove in the Andaman Sea. Institute of Ecology & Genetics, University of Aarkus, Denmark: 22–32.

    Google Scholar 

  • Boto, K. G., D. M. Alongi & A. L. J. Nott, 1989. Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove system. Mar. Ecol. Prog. Ser. 51: 243–251.

    Google Scholar 

  • Boto, K. G. & J. T. Wellington, 1983. Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Mar. Ecol. Prog. Ser. 11: 63–69.

    Google Scholar 

  • Christian, R. R. & W. J. Wiebe, 1979. Three experimental regimes in the study of sediment microbial ecology. In: C. D. Litchfield, P. L. Seyfried (eds), Methodology for Biomass Determinations and Microbial Activities in Sediments, Am. Soc. Test. Materials: 148–155.

  • Clough, B. F., 1988. Conservation and utilisation of mangrove resources. Galaxea 7: 287–296.

    Google Scholar 

  • Ducklow, H. W., 1990. The biomass, production and fate of bacteria in coral reefs. In: Dubinsky, Z. (ed.) Coral Reefs, Elsevier Sci. Publ., Amsterdam: 265–289.

    Google Scholar 

  • Dye, A. H., 1983. A method for the quantitative estimation of bacteria from mangrove sediments. Estuar. coast. Shelf Sci. 17: 207–215.

    Google Scholar 

  • Findlay, R. H., M. B. Trexler, J. B. Guckert & D. C. White, 1990a. Laboratory study of disturbance in marine sediments: response of a microbial community. Mar. Ecol. Prog. Ser. 61: 121–133.

    Google Scholar 

  • Findlay, R. H., M. B. Trexler & D. C. White, 1990b. Response of a benthic microbial community to biotic disturbance. Mar. Ecol. Prog. Ser. 62: 135–148.

    Google Scholar 

  • Furtado, J. I., W. B. Morgan, J. R. Pfafllin & K. Ruddle, (eds) 1990. Tropical Resources: Ecology and Development. Harwood Academic Publ., Chur, 306 pp.

    Google Scholar 

  • Gerlach, S. A., 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity Oecologia 33: 55–69.

    Google Scholar 

  • Hansen, J. A., D. M. Alongi, D. J. W. Moriarty & P. C. Pollard, 1987. The dynamics of benthic microbial communities at Davies Reef, Central Great Barrier Reef, Coral Reefs 6: 63–70.

    Article  Google Scholar 

  • Hatcher, B. G., R. E. Johannes & A. I. Robertson, 1989. Review of research relevant to the conservation of shallow tropical marine ecosystems. Oceanogr. Mar. Biol. annu. Rev. 27: 337–414.

    Google Scholar 

  • Herndl, G. J., J. Fagareli, N. Fanuko, P. Peduzzi & V. Turk, 1987. Role of bacteria in the carbon and nitrogen flow between water-column and sediment in a shallow marine bay (Bay of Piran, Northern Adriatic Sea). P.S.Z.N.I. Mar. Ecol. 8: 221–236.

    Google Scholar 

  • Hoppe, H. G., K. Gocke. D. Zamorano & R. Zimmerman, 1983. Degradation of macromolecular organic compounds in a tropical lagoon (Cienaga Grande, Colombia) and its ecological significance. Int. Revue ges. Hydrobiol. 68: 811–824.

    Google Scholar 

  • Kemp, P. F., 1988. Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria. Mar. Ecol. Prog. Ser 49: 163–169.

    Google Scholar 

  • Kemp, P. F., 1990. The fate of benthic bacterial production. Revue aquat Sci. 2: 109–124.

    Google Scholar 

  • Kristensen, E., F. O. Andersen & L. H. Kofoed, 1988. Preliminary assessment of benthic community metabolism in a south-east Asian mangrove swamp. Mar. Ecol. Prog. Ser. 48: 137–145.

    Google Scholar 

  • Kristensen, E., M. Holmer & N. Bussarawit, 1991. Benthic metabolism and sulfate reduction in a south-east Asian mangrove swamp. Mar. Ecol. Prog. Ser. 73: 93–103.

    Google Scholar 

  • Lathwell, D. J. & T. L. Grove, 1986. Soil-plant relationships in the tropics. Annu Rev. Ecol. Syst. 17: 1–16.

    Article  Google Scholar 

  • Lewis, W. M., 1987. Tropical limnology. Annu Rev. Ecol. Syst. 18: 159–184.

    Article  Google Scholar 

  • Matondkar, S. G. P., S. Mahtani & S. Mavinkurve, 1980. Seasonal variations in the microflora from mangrove swamp of Goa. Indian J. mar. Sci. 9: 119–122.

    Google Scholar 

  • Matondkar, S. G. P., S. Mahtani & S. Mavinkurve 1981. Studies on mangrove swamps of Goa. 1. Heterotrophic bacterial flora from mangrove swamps. Mah. Bull. Natl. Inst. Oceanogr. 14: 325–329.

    Google Scholar 

  • Meyer-Reil, L. A., 1984. Bacterial biomass and heterotrophic activity in sediments and overlying waters. In: J. E. Hobbie, P. le B. Williams (eds). Heterotrophic activity in the sea, Plenum Press, N.Y.: 523–546.

    Google Scholar 

  • Moriarty, D. J. W., 1983. Bacterial biomass and productivity in sediments, stromatolites, and water of Hamelin Pool, Shark Bay, Western Australia. Geomicrobiol. J. 3: 121–133.

    Google Scholar 

  • Moriarty, D. J. W., 1986a. Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv. Microb. Ecol. 9: 245–292.

    Google Scholar 

  • Moriarty, D. J. W., 1986b. Bacterial productivity in ponds used for culture of penaeid prawns. Microb. Ecol. 12: 259–269.

    Google Scholar 

  • Moriarty, D. J. W., 1989. Relationships of bacterial biomass and production to primary production in marine sediments. In: T. Hattori, Y. Ishida, Y. Maruyama, Y., R. Y. Morita, A. Uchida (eds), Recent Advances in Microbial Ecology, Japanese Scientific Societies Press, Tokyo: 349–354.

    Google Scholar 

  • Moriarty, D. J. W., 1990. Techniques for estimating bacterial growth rates and production of biomass in aquatic environments. In: J. R. Norris, R. Grigorova (eds), Methods in Microbiology, Vol. 22, Academic Press, London: 211–234.

    Google Scholar 

  • Moriarty, D. J. W. & P. C. Pollard, 1982. Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72: 165–173.

    Google Scholar 

  • Moriarty, D. J. W., P. I. Boon, J. A. Hansen, W. G. Hunt, I. R. Poiner, P. C. Pollard, G. W. Skyring & D. C. White, 1985. Microbial biomass and productivity in seagrass beds. Geomicrobiol. J. 4: 21–51.

    PubMed  Google Scholar 

  • Moriarty, D. J. W., R. Iverson & P. C. Pollard, 1986. Exudation of organic carbon by the seagrass Halodule wrightii and its effect on bacterial growth in the sediment. J. exp. mar. Biol. Ecol. 96: 115–126.

    Article  Google Scholar 

  • Moriarty, D. J. W., D. G. Roberts & P. C. Pollard, 1990. Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 61: 145–157.

    Google Scholar 

  • Olah, J., V. R. P. Sinha, S. Ayyappan, C. S. Purushothaman & S. Radheyshyam, 1987. Sediment oxygen consumption in tropical undrainable fish ponds. Int. Revue ges. Hydrobiol. 72: 297–305.

    Google Scholar 

  • Pollard, P. C. & D. J. W. Moriarty, 1991. Organic carbon decomposition, primary and bacterial productivity and sulphate reduction, in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 69: 149–159.

    Google Scholar 

  • Ruess, R. W. & S. J. McNaughton, 1987. Grazing and the dynamics of nutrient and energy-regulated microbial processes in the Serengeti grasslands. Oikos 49: 101–110.

    Google Scholar 

  • Short, F. T., W. C. Dennison & D. G. Capone, 1990. Phosphorus-limited growth of the tropical seagrass Syringodium filforme in carbonate sediments. Mar. Ecol. Prog. Ser. 62: 169–174.

    Google Scholar 

  • Singh, R. S., A. S. Raghubanshi, R. S. Singh & S. C. Srivastava, 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savannah. Nature 338: 499–500.

    Article  Google Scholar 

  • Singh, R. S., S. C. Srivastava, A. S. Raghubanski, J. S. Singh & S. P. Singh, 1991. Microbial C. N and P in dry tropical Savannah: effects of burning and grazing. J. Appl. Ecol. 28: 869–878.

    Google Scholar 

  • Stanley, S. O., K. G. Boto. D. M. Alongi & F. T. Gillan, 1987. Composition and bacterial utilization of free amino acids in tropical mangrove sediments. Mar. Chem. 22: 13–30.

    Article  Google Scholar 

  • Tenore, K. R., 1988. Nitrogen in benthic food chains. In: Blackburn, T. H., Sorensen, J. (eds). Nitrogen Cycling in Coastal Marine Environments, Wiley & Sons, Chichester: 191–206.

    Google Scholar 

  • Tietjen, J. H. & D. M. Alongi, 1990. Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia). Mar. Ecol. Prog. Ser. 68: 169–180.

    Google Scholar 

  • Vitousek, P. M. & R. L. Sanford, 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alongi, D.M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994). https://doi.org/10.1007/BF00005650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005650

Key words

Navigation