Skip to main content
Log in

Otolith size changes related with body growth, habitat depth and temperature

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Size variation in the sagittal otoliths of six species of the genus Merluccius, and five species of the genus Coelorhynchus was compared, using a digital image processing system and multivariate analysis. It is proposed that otolith growth occurs under dual regulation, overall shape is regulated genetically, and otolith size is influenced by environmental conditions. The decline of temperature with increasing habitat depth seems to be an important factor regulating the growth of otoliths in carbonate-saturated levels. The relative growth of the otoliths is usually negatively allometric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References cited

  • Aldrich, J.C. 1989. The world beyond the species, an argument for greater definition in experimental work. pp. 3–8. In: J.C. Aldrich (ed.) Phenotypic Responses and Individuality in Aquatic Ectotherms, Japaga, Ashford.

    Google Scholar 

  • Arnaud, P.M. 1974. Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques (Terre Adelie). Bull. Inst. Océanogr. Monaco 66: 3–24.

    Google Scholar 

  • Beamish, R.J. 1979. Differences in the age of Pacific hake (Merluccius productus) using whole otoliths and sections of otoliths. J. Fish. Res. Board Can. 36: 141–151.

    Google Scholar 

  • Boehlert, G.W. 1985. Using objective criteria and multiple regression models for age determination in fishes. U.S. Fish. Bull. 83: 103–117.

    Google Scholar 

  • Botha, L. 1971. Growth and otolith morphology of the Cape hakes Merluccius capensis Cast. and Merluccius paradoxus Franca. Invest. Rep. Div. Sea Fish. S. Afr. 97: 1–32.

    Google Scholar 

  • Campana, S.E. 1990. How reliable are growth back-calculations based on otoliths? Can. J. Fish. Aquat. Sci. 47: 2219–2227.

    Google Scholar 

  • Casselman, J.M. 1990. Growth and relative size of calcified structures of fish. Trans. Amer. Fish. Soc. 119: 673–688.

    Article  Google Scholar 

  • Dawson, W.A. 1991. Otolith measurements as a method of identifying factors affecting first-year growth and stock separation of mackerel (Scomber scombrus L.). J. Cons. int. Explor. Mer. 47: 303–317.

    Google Scholar 

  • Frost, K.J. & U.F. Lowry. 1981. Trophic importance of some marine gadids in northern Alaska and their body-otolith size relationship. U.S. Fish. Bull. 79: 187–192.

    Google Scholar 

  • Gaemers, P.A.M. 1976. New concepts in the evolution of the Gadidae (Vertebrate, Pisces), based on their otoliths. Mededelingen van de Werkgroep voor Tertiaire and Kwartaire Geologie 13: 3–22.

    Google Scholar 

  • Gauldie, R.W 1991. The morphology and periodic structures of the otolith of the chinook salmon (Oncorhynchus tshawytscha), and temperature-dependent variation in otolith microscopic growth increment width. Acta Zool. 72: 159–179.

    Article  Google Scholar 

  • Gauldie, R.W, E.J. Graynoth & J. Illingworth. 1980. The relationships of the iron content of some fish otoliths to temperature. Comp. Biochem. Physiol. A. 66: 19–24.

    Article  Google Scholar 

  • Ho, J. 1990. Phylogeny and biogeography of hakes (Merluccius; Teleostei): a cladistic analysis. U.S. Fish. Bull. 88: 95–104.

    Google Scholar 

  • Inada, T. 1981. Studies on the merlucciid fishes. Bull. Far Seas Fisheries Research Laboratory 18: 1–172.

    Google Scholar 

  • Kalish, J.M. 1989. Otoliths microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. 132: 151–178.

    Article  CAS  Google Scholar 

  • Lefebvre, J. 1976. Introduction aux analyses statistiques multidimensionelles. Masson, Paris. 259 pp.

    Google Scholar 

  • Lombarte, A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Env. Biol. Fish. 33: 405–410.

    Article  Google Scholar 

  • Lombarte, A. & A. Castellón. 1991. Inter and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool. 69: 2442–2449.

    Article  Google Scholar 

  • Lombarte, A. & B. Morales-Nin. 1989. Crecimiento de Nezumia aequalis y Coelorhynchus fasciatus (Pisces: Maerouridae) en aguas de Namibia. Coll. scient. Pap. int. Commn SE. Atl. Fish. 16: 191–198.

    Google Scholar 

  • Lombarte, A. J. Rucabado, J. Matallanas & D. Lloris. 1991. Taxonomia numerica de Notothenidae en base a la forma de los otolitos. Sci. Mar. 55: 413–418.

    Google Scholar 

  • Macpherson, E. & C.M. Duarte. 1991. Bathymetric trends in demersal size: is there a general relationship? Mar. Ecol. Prog. Ser. 71: 103–112.

    Google Scholar 

  • Masó, M. & M. Manríquez. 1987. Preliminary hydrological results of the ‘Spanish Namibian Environmental Cruise’ SNEC-II. Coll. scient. Pap. int. Commn SE. Atl. Fish. 14: 113–128.

    Google Scholar 

  • Menon, M.O. 1950. The use of bones other than otoliths in determining the age and growth rate of fishes. J. Cons. Explor. Mer. 16: 311–335.

    Google Scholar 

  • Messieh, S.N. 1972. Use otoliths in identifying herring stocks in the Southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Board Can. 29: 1113–1118.

    Google Scholar 

  • Milliman, J.D. 1974. Marine carbonates. Springer Verlag, Berlin. 375 pp.

    Google Scholar 

  • Morales-Nin, B. 1987. The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. pp. 225–262. In: A.I.L. Payne, J.A. Gulland & K.H. Brink (ed.) The Benguela and Comparable Ecosystems, S. Afr. J. mar. Sci. 5.

  • Mosegaard, H., H. Svedang & K. Taberman. 1988. Uncoupling of somatic and otolith growth rates in Arctic char (Salvelinus alpinus) as an effect of differences in temperature response. Can. J. Fish. Aquat. Sci. 45: 1514–1524.

    Article  Google Scholar 

  • Mugiya, Y. 1964. Calcification in fish and shell-fish. III. Seasonal occurrence of a prealbumin fraction, corresponding to the period of opaque zone formation in the otolith. Bull. Jap. Soc. Sci. Fish. 30: 955–967.

    CAS  Google Scholar 

  • Nolf, D. & E. Steurbaut. 1989. Evidence from otoliths for establishing relationships within gadiforms. pp. 89–112. In: D.M. Cohen (ed.) Papers on the Systematics of Gadiform Fishes, Science Series, Natural History Museum of Los Angeles County 32.

  • Platt, C. & A.N. Popper. 1981. Fine structure and function of the ear. pp. 3–38. In: W.N. Tavolga, A.N. Popper & R.R. Fay (ed.) Hearing and Sound Communication in Fishes, Springer Verlag, New York.

    Google Scholar 

  • Radtke, R.L. & T.E. Targett. 1984. Rhythmic structural and chemical patterns in otoliths of the Antarctic fish Notothenia larsenk their application to age determination. Polar Biol. 3: 203–210.

    Article  CAS  Google Scholar 

  • Saetersdal, G.S. 1953. The haddock in Norwegian waters. II. Methods in age and growth investigations. Rep. Norwegian Fish. Marine Invest. 10: 1–46.

    Google Scholar 

  • Salat, J. & J. Font. 1987. Water mass structure near and offshore the Catalan coast during the winters of 1982 and 1983. Ann. Geophys. 198 (5B): 49–54.

    Google Scholar 

  • Shannon, L.V. 1985. The Benguela ecosystem. Part I. Evolution of the Benguela, physical features and processes. Oceanogr. Mar. Biol. Ann. Rev. 23: 105–182.

    Google Scholar 

  • Simkiss, K. 1974. Calcium metabolism of fish in relation to ageing pp. 1–12. In: T.B. Bagenal (ed.) Ageing of Fish, Unwin Brothers, Old Woking.

    Google Scholar 

  • Templeman, W. & H.J. Squire. 1956. Relationships of otolith lengths and weights in the haddock Melanogrammus aeglefinus (L.) to the rate of growth of the fish. J. Fish. Res. Board Can. 13: 467–487.

    Google Scholar 

  • Turón, J.M., J. Rucabado, D. Lloris & E. Macpherson. 1986. Datos pesqueros de las expediciones realizadas en aguas de Namibia durante Ins años 1981 a 1984 (Benguela III a Benguela VII y Valdivia I). Datos Informativos Inst. Inv. Pesq. 17: 1–344.

    Google Scholar 

  • Vermeij, G.J. 1978. Biogeography and adaptation patterns of marine life. Harvard University Press, Cambridge. 332 pp.

    Google Scholar 

  • Wilson Jr., R.R. 1985. Depth-related changes in sagitta morphology in six macrourid fishes of the Pacific and Atlantic oceans. Copeai 1985: 1011–1017.

  • Woodhead, P.M.S. 1968. Seasonal changes in the calcium content of the blood of arctic cod. J. mar. biol. U.K. 48: 81–91.

    Article  Google Scholar 

  • Yefanov, V.N. & L.O. Khorevin. 1979. Distinguishing populations of pink salmon Oncorhynchus gorbuscha, by the size of their otoliths. J. Ichthyol. 19: 142–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombarte, A., Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ Biol Fish 37, 297–306 (1993). https://doi.org/10.1007/BF00004637

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004637

Keywords

Navigation