Skip to main content
Log in

Sulfur cycling in a forested Sphagnum bog in northern Minnesota

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The mass balance and internal cycle of sulfur within a small forested,Sphagnum bog in northern Minnesota are presented here based on a 4-year record of hydrologic inputs and outputs (precipitation, throughfall, streamflow, upland runoff) and a 3-year measurement of plant growth and sulfur uptake. Concentrations and accumulation rates of inorganic and organic sulfur species were measured in porewater. The bog is a large sink for sulfur, retaining 37% of the total sulfur input. Because of the relatively large export of organic S (21% of inputs), retention efficiency for total-S (organic S + SO =4 ; 37%) is less than that for SO =4 (58%). There is a dynamic cycle of oxidation and reduction within the bog. Annual oxidation and recycling of S is equal to total inputs in the center of the bog. Plants receive 47% of their uptake requirement from atmospheric deposition, 5% from retranslocation from foliage, and the remainder from sulfur remineralized from peat. Mineralization is most intense in the aerobic zone above the water table. Inorganic sulfur species comprise <5% of the total sulfur burden within the peat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DF, Farwell SO, Robinson E, Pack MR & Bamesberger WL (1981) Biogenic sulfur source strengths. Envir. Sci. Tech. 15: 1493–1498

    Article  CAS  Google Scholar 

  • Altschuler ZS, Schnepfe MM, Silber CC & Simon FO (1983) Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science 221: 221–227

    CAS  Google Scholar 

  • Aneja VP, Aneja AP & Adams DF (1982) Biogenic sulfur compounds and the global sulfur cycle. J. Air Poll. Control Assoc. 32: 803–807

    CAS  Google Scholar 

  • Bayley SE, Behr RS & Kelly CA (1986) Retention and release of S from a freshwater wetland. Water Air Soil Poll. 31: 101–114

    Article  CAS  Google Scholar 

  • Bayley SE & Schindler DW (1987) Sources of alkalinity in pre-Cambrain shield watersheds under natural conditions and after fire or acidification. In: Hutchinson TC & Meema KM (Eds) Effects of Air Pollutants on Forests. Agriculture and Wetlands. Springer, NY

    Google Scholar 

  • Bayley SE, Vitt DH, Newbury RW, Beaty KG, Behr R & Miller C(1987) Experimental acidification of a Sphagnum dominated peatland: first-year results. Can. J. Fish. Aquat. Sci. 44: 194–205

    CAS  Google Scholar 

  • Behr RS (1985) Sulfur dynamics in an experimental acidified mire in northwestern Ontario. M.S. Thesis, Univ. of Manitoba. 105 pp.

  • Berner RA (1967) Thermodynamic stability of sedimentary iron sulfides. Amer. J.Sci. 265:773–785

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Total Nitrogen. Chap 83 In: Black CA (Ed) Methods of Soil Analysis (pp 1149–1177) Am. Sot. of Agron., Madison

    Google Scholar 

  • Brezonik PL, Baker LA & Perry TE (1987) Mechanisms of alkalinity generation in acid-sensitive soft water lakes. In: Hites RA & Eisenreich SJ (Eds), Sources and Fates of Aquatic Pollutants (pp 229–260) Amer. Chem. Soc. Washington, D.C.

    Google Scholar 

  • Carlisle A, Brown A & White EJ (1966) The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraca) canopy. J. Ecol. 54: 87–98

    Article  Google Scholar 

  • Carlisle A, Brown A & White EJ (1967) The nutrient content of tree stem flow and ground flora litter and leachates in a sessile oak (Quercus petrea) woodland, J. Ecol. 55: 615–627

    Article  Google Scholar 

  • Casagrande DJ, Gronli K & Sutton N (1980) The distribution of sulfur and organic matter in various fractions of peat: origins of sulfur in coal. Geochim. Cosmochim. Acta 44: 25–32

    Article  CAS  Google Scholar 

  • Casagrande DJ, Siefert K, Berschinski C & Sutton N (1977) Sulfur in peat-forming systems of the Okefenokee swamp and Florida Evergaldes: origins of sulfur in coal. Geochim. Cosmochim. Acta 41: 161–167

    Article  CAS  Google Scholar 

  • Casagrande DJ, Idowu G, Friedman A, Rickert P, Siefert K, Schlenz D (1979) H2S incorporation in coal precursors: origins of sulfur in coal. Nature 282: 599–600

    Article  CAS  Google Scholar 

  • Chapin FS, Barsdate RJ & Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31: 189–199

    CAS  Google Scholar 

  • Clymo RS (1978) A model of peat bog growth. Chapter 9. In: Perkin W & Heal O (Eds) Production Ecology of British Moors and Montane Grasslands. Ecol. Studies 27: 187–223

  • Cook RB (1984) Distributions of ferrous iron and sulfide in an anoxic hypolimnion. Can. J.Fish. Aquat. Sci. 41: 286–293

    CAS  Google Scholar 

  • Cronan CS & Reiners WA (1983) Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia 59: 216–223

    Article  Google Scholar 

  • David MB & Mitchell MJ (1985) Sulfur constituents and cycling in waters, sesten, and sediments of an oligotrophic lake. Limnol. Oceanog. 30: 1196–1207

    CAS  Google Scholar 

  • Eaton JS, Likens GE & Bormann FH (1973) Throughfall and stemflow chemistry in a northern hardwoods forest. J. Ecol. 61: 495–508

    Article  CAS  Google Scholar 

  • Eisenreich SJ, Hollod GJ & Langevin S (1978) Precipitation chemistry and atmospheric deposition of trace elements in northeastern Minnesota. Minnesota Envir. Qual. Council and Minnesota State Planning Agency Report. 149 pp.

  • Farwell SO, Sherrard AE, Pack MR & Adams DF (1979) Sulfur compounds volatized from soils at different moisture contents. Soil Biol. Biochem. 11: 411–415

    Article  CAS  Google Scholar 

  • Ferguson P, Robinson RN, Press MC and Lee JA (1984) Element concentrations in five Sphagnum species in relation to atmospheric pollutants. J. Bryol. 13: 107–114

    Google Scholar 

  • Giblin AE & Howarth RW (1984) Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol. Oceanog. 29: 47–63

    CAS  Google Scholar 

  • Given PH (1975) Environmental organic chemistry of bogs, marshes and swamps. In: Environmental Chemistry. Vol 1. Chapter 3, Chemical Soc., London

  • Goldhaber MB & Kaplan IR (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci. 119: 42–55

    CAS  Google Scholar 

  • Gorham E, Bayley SE & Schindler DW (1984) Effects of acid deposition upon peatlands. Can. J. Fish. Aquat. Sci. 41: 1256–1268

    Article  CAS  Google Scholar 

  • Gorham E, Dean WE & Sanger JE (1983) The chemical composition of lakes in the northcentral United States. Limnol. Oceanog. 28: 287–302

    CAS  Google Scholar 

  • Gorham E, Eisenreich SJ, Ford J & Santelman MV (1985) The chemistry of bog waters. Chapter 15. In: Stumm W (Ed) Chemical Processes in Lakes (pp 339–363) J. Wiley & Sons, NY

    Google Scholar 

  • Grigal DF (1985) Sphagnum production in forested bogs of northern Minnesota. Can.J. Bot. 63: 1204–1207

    Google Scholar 

  • Grigal DF, Buttleman CG & Kernik L (1985) Biomass and productivity of the woody strata of forested bogs in northern Minnesota. Can. J. Bot. 63: 2416–2424

    Article  Google Scholar 

  • Helmer, EH (1987) Aluminium Speciation in Bog Waters and Aluminium-organic matter Conditional Stability Constants. M.S. Thesis, Univ. Minnesota, Minneapolis. 197 pp.

  • Hemond H (1980) Biogeochemistry of Thoreau's Bog, Concord, Mass. Ecol. Monogr. 50: 507–526

    Article  CAS  Google Scholar 

  • Hemond HF, Army TP, Nuttle WK, Chen DG (1987) Carbon, nitrogen and sulfur cycling in wetlands: interactions with physical mass transport. In: Eisenreich SJ & Hites RJ (Eds) Chemistry of Aquatic Pollutants (pp. 519–537) Amer. Chem. Sot., Wash. D.C.

    Google Scholar 

  • Henderson GS, Harris WF, Todd DE & Grizzard T (1977) Quantity and chemistry of throughfall as influenced by forest type and season. J. Ecol. 65: 365–374

    Article  CAS  Google Scholar 

  • Howarth RW (1979) Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203: 49–51

    CAS  Google Scholar 

  • Howarth RW (1984) The ecological significance of sulfur in the energy dynamics of saltmarsh and coastal marine sediments. Biogeochem. 1: 5–28

    Article  CAS  Google Scholar 

  • Howarth RW & Giblin AE (1983) Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnol. Oceanog. 28: 70–82

    CAS  Google Scholar 

  • Howarth RW & Jorgensen BB (1984) Formation of35S-labelled elemental sulfur and pyrite in coastal marine sediments during short-term35SO =4 reduction measurements. Geochim. Cosmochim. Acta 48: 1807–1818

    Article  CAS  Google Scholar 

  • Huffman EWD & Stuber HA (1985) Analytical methodology for elemental analysis of humic substances. Chapter 17. In: Aiken GR, McKnight DM & Wershaw RL (Eds) Humic Substances in Soil, Sediment and Water (pp 433–456) J. Wiley & Sons, NY

    Google Scholar 

  • Ivanov MV, (1981) The global biogeochemical sulphur cycle. Chap 4 In: Likens GE (Ed) Some Perspectives of the Major Biogeochemical Cycles (pp 61–78) SCOPE 17

  • Kerekes J, Beauchamp S, Tordon R, Tremblay C & Pollock T (1986) Organic versus anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia. Water Air Soil Poll. 30: 165–174

    Google Scholar 

  • King GM, Howes BL, Dacey JW (1985) Short-term endproducts of sulfate reduction in a salt marsh: formation of acid-volatile sulfides, elemental sulfur, and pyrite. Geochim. Cosmochim. Acta 49: 1561–1566

    Article  CAS  Google Scholar 

  • King GM & Klug MJ (1980) Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Appl. Envir. Microbiol. 39: 950–956

    CAS  Google Scholar 

  • King GM & Klug MJ (1982) Comparative aspects of sulfur mineralization in sediments of a eutrophic lake basin. Appl. Envir. Microbiol. 43: 1406–1412

    CAS  Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biochemistry of a Forested Ecosystem. Springer-Verlag. N.Y.C. 146 pp.

    Google Scholar 

  • Lindberg SE, Lovett GM, Richter DD & Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145

    CAS  Google Scholar 

  • Lowe LE (1986) Application of a sequential extraction procedure to the determination of the distribution of sulphur forms in selected peat materials. Can. J. Soil. 66: 337–345

    CAS  Google Scholar 

  • Lowe LE & Bustin RM (1985) Distribution of sulfphur forms in six facies of peats of the Fraser River delta. Can. J. Soil Sci. 65: 531–541

    CAS  Google Scholar 

  • Luther GW, Church TM, Scudlark JR, Cosman M (1986) Inorganic and organic sulfur cycling in salt-marsh pore waters. Science 232: 746–749

    CAS  Google Scholar 

  • Malcolm RL (1985) Geochemistry of stream fulvic and humic substances. In: Aiken GR, McKnight DM, Wershaw & MacCarthy P (Eds) Humic Substances in Soil, Sediment and Water (pp 181–210) J. Wiley & Sons, NY

    Google Scholar 

  • Malmer N & Holm E (1984) Variation in the C:N quotient of peat in relation to decomposition rate and age determination with Pb-210. Oikos 43: 171–182

    CAS  Google Scholar 

  • Mango FD (1983) The diagenesis of carbohydrates by hydrogen sulfide. Geochim. Cosmochim. Acta 47: 1433–1441

    Article  CAS  Google Scholar 

  • McGill WB & Cole CV (1981) Comparative aspects of cycling of organic C,N,S, and P through soil organic matter. Geoderma 26: 267–286

    Article  CAS  Google Scholar 

  • McKnight DM, Thurman E, Wershaw R & Hemond H (1985) Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Mass. Ecology 66: 1339–1352

    Article  CAS  Google Scholar 

  • McNaughton SJ & Wolf LL (1973) General Ecology. Holt, Rinehart & Winston, Inc., N.Y. 710 pp.

    Google Scholar 

  • Meiwes KJ & Khanna PK (1981) Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant Soil 60: 369–375

    Article  CAS  Google Scholar 

  • Melillo JM & Gosz JR (1983) Interactions of biogeochemical cycles in forest ecosystems. Chapter 6. In: Bolin B & Cook RB (Eds) The Major Biogeochemical Cycles and their Interactions (pp 177–222) SCOPE 23

  • Moizuk GA & Livingston RB (1966) Ecology of red maple (Acer rubrum) in a Massachusetts upland bog. Ecology 47: 942–950

    Article  Google Scholar 

  • Munger JW (1981) Environmental controls and Ecological Consequences of Regional Precipitation Chemistry in Minnesota. M.S. Thesis. Univ. of Minnesota. 154 pp.

  • Nissenbaum A & Kaplan IR (1972) Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanog. 17: 570–582

    CAS  Google Scholar 

  • Norton SA (1983) Geochemistry of Maine peat bogs, Maine Geol. Survey. 62 pp.

  • Nriagu JO & Soon YK (1985) Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochim. Cosmochim. Acta 49: 823–834

    Article  CAS  Google Scholar 

  • Oldfield F, Appleby P, Cambray R, Eakins J, Barber K, Battarbee R, Pearson G, Williams J (1979) Pb-210, Cs-137, and Pu-239 profiles in ombrotrophic peat. Oikos 33: 40–45

    CAS  Google Scholar 

  • Pakarinen P. (1981) Anaerobic peat as a nutrient sink in raised bogs. Suo 32: 15–19

    CAS  Google Scholar 

  • Percy KE (1983) Heavy metal and sulfur concentrations in Sphagnum magellanicum Brid. in the Maritime Provinces, Canada. Water Air Soil Poll. 19: 341–349

    CAS  Google Scholar 

  • Perdue EM (1985) Acidic functional groups of humic substances. In: Aiken GR, McKnight DM, Wershaw RL & MacCarthy P (Eds) Humic Substances in Soil, Sediment and Water (pp 493–526) J. Wiley & Sons, NY

    Google Scholar 

  • Pratt GC, Coscio MR, Krupa SV (1984) Regional rainfall chemistry in Minnesota and west central Wisconsin. Atmos. Envir. 18; 173–182

    Article  CAS  Google Scholar 

  • Rapaport RA & Eisenreich SJ (1986) Atmospheric deposition of Toxaphene to eastern North America derived from peat accumulation. Atmos. Envir. 20: 2367–2379

    Article  CAS  Google Scholar 

  • Rapaport RA, Urban NR, Chapel PD, Baker JE, Looney, BB, Eisenreich SJ & Gorham E (1985) New DDT inputs to N.America: atmospheric deposition. Chemosphere 14: 1167–1173

    Article  CAS  Google Scholar 

  • Rickard DT (1975) Kinetics and mechanism of pyrite formation at low temperatures. Amer. J. Sci. 275: 636–652

    Article  CAS  Google Scholar 

  • Rudd JW, Kelly CA, Furutani A (1986) The role of sulfate reduction in long-term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr. 31: 1281–1291

    Article  CAS  Google Scholar 

  • Schell WR (1986) Deposited atmospheric chemicals. Envir. Sci. Tech. 20: 847–853

    Article  CAS  Google Scholar 

  • Schindler DW (1981) Interrelationships between the cycles of elements in freshwater ecosystems. In: Likens GE (ED) Some Perspectives of the Major Biogeochemical Cycles (pp 113–123) SCOPE 17

  • Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos. Envir. Qual. 7: 392–397

    Google Scholar 

  • Smith RL & Klug MJ (1981) Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl. Envir. Microbiol. 41: 1230–1237

    CAS  Google Scholar 

  • Steudler PA & Peterson BJ (1984) Contribution of gaseous sulphur from salt marshes to the global sulphur cycle. Nature 311: 455–457

    Article  CAS  Google Scholar 

  • Stewart JW, Cole CV & Maynard DG (1983) Interactions of biogeochemical cycles in grassland ecosystems. Chapter 8 In: Bolin B & Cook RB (Eds) The Major Biogeochemical Cycles and their Interactions (pp. 247–270) SCOPE 21

  • Svensson BH & Rosswall T (1980) Energy flow through the subarctic mire at Stordalen. In: Sonesson M (Ed) Ecology of a Subarctic Mire. Ecol. Bull. 30: 283–303

  • Tamm CO (1954) Some observations on the nutrient turn-over in a bog community dominated by Eriophorum vaginatum L. Oikos 5: 189–194

    Google Scholar 

  • Tarleton A, Lang GE & Wieder RK (1984) Removal of iron from acid mine drainage by Sphagnum peat: results from experimental laboratory microcosms. In: Proc. 1984 Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation. Lexington, Ky

  • Thurman EM (1985) Organic Geochemistry of Natural Waters. Martinus Nijhoff Publ., Rotterdam. 497 pp.

    Google Scholar 

  • Tilton DL (1978) Comparative growth and foliar element concentrations of Larix laricina over a range of wetland types in Minnesota. J. Ecol. 66: 499–512

    Article  CAS  Google Scholar 

  • Timmons DR, Verry ES, Burwell RE, Holt RF (1977) Nutrient transport in surface runoff and interflow from an aspen-birch forest. J.Envir. Qual. 6: 188–192

    Article  CAS  Google Scholar 

  • Troelsen H & Jorgensen BB (1982) Seasonal dynamics of elemental sulfur in two coastal sediments. Est. Coastal Shelf Sci. 15: 255–266

    Article  CAS  Google Scholar 

  • Turner J, Johnson DW & Lambert MJ (1980) Sulphur cycling in a Douglas fir forest and its modification by nitrogen applications. Acta Oecologia 1: 27–35

    CAS  Google Scholar 

  • Urban NR (1983) The nitrogen cycle in a forested bog watershed in northern Minnesota. M.S. Thesis, Univ. of Minnesota. 359 pp

  • Urban NR (1987) The nature and origins of acidity in bogs. Ph.D. Thesis, Univ. of Minnesota. 404 pp.

  • Urban NR & Bayley SE (1986) The acid-base balance of peatlands: a short-term perspective. Water Air Soil Poll. 31: 791–800

    Article  Google Scholar 

  • Urban NR, Eisenreich SJ & Gorham E (1987) Proton cycling in bogs: geographic variation in northeastern N. America. In: Hutchinson TC & Meema KM (Eds) Effects of Air Pollutants on Forests, Agriculture, and Wetlands (pp 577–598) Springer, NY

    Google Scholar 

  • Urban NR, Eisenriech, SJ & Gorham E (1987b) Aluminium, iron, lead and zinc in bog waters of northeastern North America. Can.J. Fish. Aquat. Sci. 44: 1165–1172

    CAS  Google Scholar 

  • Urban NR & Eisenreich (1988) The Nitrogen cycle of a Sphagnum bog. Can. J. Bot 66: 435–449

    Google Scholar 

  • van Breemen N, Burrough PA, Velthorst EJ, Van Dobben HF, DeWit T, Ridder TB, Reignders H (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299: 548–550

    Article  Google Scholar 

  • Vandenbroucke M, Pelet R & Debyser Y (1985) Geochemistry of humic substances in marine sediments. In: Aiken GR, McKnight DM, McKnight DM, Wershaw RW & MacCarthy P (Eds) Humic Substances in Soil, Sediment and Water (pp. 249–274) J. Wiley & Sons, NY

    Google Scholar 

  • Verry ES (1975) Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota. Ecology 56: 1149–1157

    Article  CAS  Google Scholar 

  • Verry ES (1983) Precipitation chemistry at the Marcell Experimental Forest in north central Minnesota. Water Res. Res. 19: 454–462

    CAS  Google Scholar 

  • Verry ES (1984) Microtopography and water table fluctuation in a Sphagnum mire. Proc. 7th Internat. Peat Congr. Dublin, pp. 11–31

  • Verry ES & Harris AR (1983) Strafitying wet atmospheric samples. Proc. Acid Rain and Forest Resource Conf. Quebec City, Canada. June 1983

  • Verry ES & Timmons DR (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can. J. For. Res. 7: 112–119

    CAS  Google Scholar 

  • Verry ES & Timmons DR (1982) Water-borne nutrient flow through an upland-peatland watershed in Minnesota. Ecology 63: 1456–1467

    Article  CAS  Google Scholar 

  • Voldner EC & Sirois (1986) Monthly mean spatial variations of dry deposition velocities of oxides of sulphur and nitrogen. Water Air Soil Pollution 30: 179–186

    Article  CAS  Google Scholar 

  • Watt RF & Heinselman ML (1965) Foliar nitrogen and phosphorus level relatede to site quality in a northern Minnesota spruce bog. Ecology 46: 357–360

    Article  Google Scholar 

  • Wieder RK & Lang GE (1982) Modification of acid mine drainage in a freshwater wetland. Proc. Symp. on Wetlands of the Unglaciated Appalachian Region (pp 43–53) W.Va Univ., Morgantown, W.Va

    Google Scholar 

  • Wieder RK & Lang GE (1986) Fe, AI, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water Air Soil Poll. 29: 309–320

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE & Granus VA (1985) An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat. Limnol. Oceanogr. 305: 1109–1115

    Google Scholar 

  • Wieder RK, Lang GE, Granus VA (1987) Sulphur transformations in Sphagnum-derived peat during incubation. Soil Biol. Biochem. 19: 101–106

    Article  CAS  Google Scholar 

  • Zinder SH & Brock TD (1978) Microbial transformations of sulfur in the environment. In Nriagu JO (Ed) Sulfur in the Environment. Part II (pp 445–466) J. Wiley & Sons, N.Y.C

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, N.R., Eisenreich, S.J. & Grigal, D.F. Sulfur cycling in a forested Sphagnum bog in northern Minnesota. Biogeochemistry 7, 81–109 (1989). https://doi.org/10.1007/BF00004123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004123

Key words

Navigation