Skip to main content
Log in

Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The total protein, carbohydrate, lipid and ash compositions, and fatty acid contents of two species of marine microalgae, the eustigmatophyte Nannochloropsis oculata (formerly ‘Chlorella sp., Japan’) and the chrysophyte Isochrysis sp. (Tahitian) used in tropical Australian mariculture, were studied. The microalgae were grown under a range of culture conditions (41 and 601 laboratory culture, 3001 bag culture, and 80001 outdoor culture) and four light regimes (100 to 107 µ E m−2 s−1, 240 to 390 µ E m−2 s−1, 340 to 620 µ E m−2 s−1, and 1100 to 1200 µE m−2 s−1 respectively) to determine the effect of light intensity on the chemical composition of large scale outdoor cultures. Laboratory and bag cultures were axenic and cultured in Walne medium while outdoor cultures were grown in a commercial medium designed for optimum nutrition in tropical outdoor aquaculture operations. Change in growth medium and photon flux density produced only small changes in the proximate biochemical composition of both algae. N. oculata and Isochrysis sp. both showed a trend towards slightly lower carbohydrate and higher chlorophyll a in shaded outdoor culture. Isochrysis sp. showed significant concentrations of the essential polyunsaturated fatty acid 22:6(n−3) (docosahexaenoic acid) from 5.3 to 10.3% of total fatty acid, and 20:5(n−3) (eicosapentaenoic acid) ranged from 0.6 to 4.1%. In contrast, N. oculata had high concentrations of 20:5(n−3) (17.8 to 39.9%) and only traces of 22:6(n−3). The fatty acid composition of Isochrysis sp. grown at high photon flux density (1100–1200 µE m−2 s−1) under outdoor culture showed a decrease in the percentage of several highly unsaturated fatty acids, including 20:5(n−3), and an increase in 22:6(n−3). N. oculata showed a similar decrease in the percentage of 20:5(n−3). High light intensity caused a decrease in the ratio of total C16 unsaturated fatty acids to saturated 16:0 in N. oculata, and a decrease in the ratio of total C18 unsaturated fatty acids to saturated 18:0 together with a decrease in the ratio of total unsaturated fatty acids to total saturated fatty acids in both microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarenson S (1973) Effect of incubation temperature on the macro-molecular and lipid content of the phytoflagellate Ochromonas danica. J. Phycol. 9: 111–113.

    Article  Google Scholar 

  • Ackman RG (1986) WCOT (capillary) gas-liquid chromatography. In: Hamilton RJ, Russell JB (eds), Analysis of Oils and Fats. Elsevier, N.Y., 137–206.

    Google Scholar 

  • Ackman RG, Tocher CS (1968) Marine phytoplanktonic fatty acids. J. Fish. Res. Bd Canada 25: 1603–1620.

    CAS  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 2–81.

    Google Scholar 

  • Ben-Amotz A, Fisher R, Schneller A (1987) Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar. Biol. 95: 31–36.

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Chu FE, Dupuy DJ (1980) The fatty acid composition of three unicellular algal species used as food sources for larvae of the Americal oyster (Crassostrea virginica). Lipids 15: 356–364.

    CAS  Google Scholar 

  • Chu FE, Webb KL (1984) Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19: 815–820.

    CAS  Google Scholar 

  • Collyer DM, Fogg GE (1955) Studies on fat accumulation by algae. J. Exp. Bot. 6: 256–275.

    CAS  Google Scholar 

  • Coombs J, Darley WM, Holm-Hansen O, Volcani BE (1967) Studies on the biochemistry and fine structure of silica shell formation in diatoms: chemical composition of Navicula pelliculosa during silicon starvation synchrony. Plant Physiol. 42: 1601–1606.

    PubMed  CAS  Google Scholar 

  • Darley WM (1977). Biochemical composition. In: Werner D (ed), The Biology of Diatoms. Univ. of California Press, Berkeley, 198–223.

    Google Scholar 

  • Dortch Q (1982) Effect of growth conditions on the accumulation of internal nitrate, ammonium, amino acids and protein in three marine diatoms. J. exp. mar. Biol. Ecol. 61: 243–254.

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1959) Colorimetric method for the determination of sugars and related substances. Anal. Chem. 18: 350–356.

    Google Scholar 

  • Enright CT, Newkirk CF, Craigie JS, Castell JD (1986) Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J. exp. mar. Biol. Ecol. 96: 1–13.

    Article  Google Scholar 

  • Fabregas J, Herrero C, Abalde J, Liano R, Cabezas B (1986) Biomass production and biochemical variability of the marine microalga Dunaliella tertiolecta with high nutrient concentration. Aquaculture 53: 87–200.

    Google Scholar 

  • Fisher NS, Schwarzenbach RP (1978) Fatty acid dynamics in Thalassiosira pseudonana (Bacillariophyceae): implications for physiological ecology. J. Phycol. 14: 143–150.

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.

    PubMed  CAS  Google Scholar 

  • Horwitz W (1980). Official methods of analysis of the Association of Official Analytical Chemists. A.O.A.C., Washington, 127–129.

    Google Scholar 

  • Iwamoto H, Yonekawa G, Asai T (1955) Fat synthesis in unicellular algae: I. Culture conditions for fat accumulation in Chlorella cells. Bull. Agr. Chem. Soc. 9: 240–252.

    Google Scholar 

  • James CM, Al-Hinty S, Salman AE (1989) Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 77: 337–351.

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J. appl. Phycol. 2: 45–56.

    Article  Google Scholar 

  • Langdon CJ, Walcock MJ (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas Spat. J. Mar. Biol. Ass. U.K. 61: 431–448.

    Article  CAS  Google Scholar 

  • Levine DM, Sulkin SD (1984) Nutritional significance of long-chain polyunsaturated fatty acids to the zoel development of the brachyuran crab, Eurypanopeus depressus (Smith). J. Exp. mar. Biol. & Ecol. 84: 211–223.

    Article  Google Scholar 

  • Materassi R, Paoletti C, Balloni W, Florenzan O (1980) Some considerations on the production of lipid substances by microalgae and cyanobacteria. In: Shelef G, Soeder CJ (eds), Algal Biomass: Production and Use. Elsevier, Amsterdam, 625–653.

    Google Scholar 

  • Maruyama I, Nakamura T, Matsubayashi T, Ando Y, Maeda T (1986) Identification of the alga known as ‘marine Chlorella’ as a member of the Eustigmatophyceae. Jpn. J. Phycol. 34: 319–325.

    Google Scholar 

  • Millie DF (1985) Nutrient-limitation effects on the biochemical composition of Cyclotella meneghiana (Bacilliophyta): an experimental and statistical analysis. Can. J. Bot. 64: 19–26.

    Google Scholar 

  • Mortensen SH, Borsheim KY, Rainuzzo JK, Knutsen G (1988) Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schutt. Effects of silicate deprivation, temperature and light intensity. J. exp. mar. Biol. Ecol. 122: 173–185.

    Article  CAS  Google Scholar 

  • Myklestad S (1974) Production of carbohydrates by marine planktonic diatoms. I. Composition of nine different species in culture. J. exp. mar. Biol. Ecol. 15: 261–274.

    Article  CAS  Google Scholar 

  • Nichols BW (1965) Light induced changes in the lipids of Chlorella vulgaris. Biochem. Biophys. Acta, 106: 274–279.

    PubMed  CAS  Google Scholar 

  • Nichols PD, Holdsworth DG, Volkman JK, Daintith M, Allanson S (1989) High incorporation of essential fatty acids by rotifer Brachionus plicatilis fed on the prymnesiophyte alga Pavlova lutheri. Aust. J. mar. Freshwat. res. 40: 645–655.

    Article  CAS  Google Scholar 

  • Opute FI (1974) Studies on fat accumulation in Nitzschia palea. Ann. Bot. NS 38: 889–892.

    Google Scholar 

  • Pillsbury KS (1985) The relative food value of and the biochemical composition of five phytoplankton diets for queen conch Strombus gigas larvae. J. exp. mar. Biol. Ecol. 90: 221–232.

    Article  Google Scholar 

  • Pohl P, Zurheide F (1979) Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In: Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. De Gruyter, New York, 473–523.

    Google Scholar 

  • Rimmer MA, Stewart MD, Semmens GL, Meikle GM, O'Brien JJ, Reed A, Norton J (1988) Improved diet for baramundi larvae. Australian Fisheries 47 (11): 22–23.

    Google Scholar 

  • Roessler PG (1988) Effect of silicon deficiency on the lipid composition and metabolism in the diatom Cyclotella cryptica. J. Phycol. 24: 394–399.

    CAS  Google Scholar 

  • Scott AP, Middleton C (1979) Unicellular algae as a food for turbot (Scophthalmus maximus L.) larvae: the importance of dietary long-chain polyunsaturated fatty acids. Aquaculture 18: 227–240.

    Article  CAS  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplanktonic lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17: 374–384.

    Article  CAS  Google Scholar 

  • Sorgeloos P, Leger P, Lavens P (1988) Improved larval rearing of European and Asian seabass, sea bream, mahi-mahi, siganid and milkfish using enrichment diets for brachionus and artemia. World Aquaculture. 19 (4): 78–79.

    Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella. Effect of environmental conditions. Plant. Physiol. 24: 120–149.

    Article  PubMed  CAS  Google Scholar 

  • Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloris sp. under different nitrogen regimes. J. Phycol. 23: 289–296.

    CAS  Google Scholar 

  • Sukenik A, Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophycae) grown in a light-dark cycle. J. Phycol. 26: 463–469.

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J. Phycol. 25: 686–692.

    Article  CAS  Google Scholar 

  • Teshima S, Yamasaki S, Kanazawa A, Hirata H (1983) Effects of water temperature and salinity on eicosapentaenoic acid level of marine Chlorella. Bull. Jpn. Soc. Sci. Fish. 49: 805.

    CAS  Google Scholar 

  • Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J. Phycol. 26: 278–288.

    Article  CAS  Google Scholar 

  • Varum KM, Myklestad S (1984) Effects of light, salinity and nutrient limitation on the products of β 1-3-D-glucan and exo-D-glucanase activity in Skeletonema costatum (Grev.) Cleve. J. exp. mar. Biol. Ecol. 83: 13–25.

    Article  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of the species of microalgae used in mariculture. J. exp. mar. Biol. Ecol. 128: 219–240.

    Article  CAS  Google Scholar 

  • Walne PR (1966) Experiments in the large scale culture of the larvae of Ostrea edulis L. Fish. Invest. Min. Agric. Fish. Ser. 25: 53.

    Google Scholar 

  • Watanabe T, Kitajima C, Jujita S (1983) Nutritional value of live organisms used in Japan for mass propagation of fish: a review. Acquaculture 34: 115–143.

    Article  CAS  Google Scholar 

  • Wikfors GH (1986) Altering growth and gross chemical composition of two microalgal molluscan food species by varying nitrate and phosphate. Aquaculture 59: 1–14.

    Article  CAS  Google Scholar 

  • Wikfors GH, Twarog JW, Ukeles R (1984) Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea virginica. Biol Bull. (Woods Hole, Mas.) 167: 251–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renaud, S.M., Parry, D.L., Thinh, LV. et al. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3, 43–53 (1991). https://doi.org/10.1007/BF00003918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00003918

Key words

Navigation