Skip to main content
Log in

Neuroecology of cyprinids: comparative, quantitative histology reveals diverse brain patterns

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Brain patterns are compared by quantitative histology in 28 native and introduced mid-European cyprinid species, considering 17 primary sensory and higher order brain areas. Cluster analysis (CLA) and principal component analysis (PCA) based on relative volumes of these brain areas indicate that cyprinid brains are diversified into four major groups, basic cyprinid, abramine, octavo-lateralis and chemosensory. PCA recognizes the brain of Phoxinus phoxinus as a fifth group. Interspecific differences in brain morphology are mainly caused by variability in relative sizes of the brain stem lobes for external and internal taste (lobus facialis and lobus vagus), as well as of octavo-lateralis and visual areas. Higher order brain areas show little interspecific variation in relative size, and were grouped by PCA according to inter- and intraspecific allometries. Hypotheses on brain functions are based on brain area correlations. We propose that the processing of external taste information in the valvula cerebelli may be particularly important for benthivorous cyprinids, whereas the integration of octavo-lateralis input with visual information via the torus longitudinalis-stratum marginale system may play a key role in the planktivores. Brain patterns suggest two major pathways of cyprinid evolutionary and ecological radiation, one leading from the basic cyprinids towards octavo-lateralis dominated midwater and surface planktivores, the second towards taste-dominated benthivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Ariens Kappers, C.U., G.C. Huber & E.C. Crosby. 1936. The comparative anatomy of the nervous system of vertebrates, including man. Vol. 1–3. Macmillan, New York. 1350 pp.

    Google Scholar 

  • Balon, E. 1968. Beitrag zur Systematik, Ökologie, Morphologie, Alter, Wachstum und Eizahl der Eier der Ziege [Pelecus cultratus (L.)] aus der Donau bei Medevedov. Biologické práce (Bratislava) 13: 63–88.

    Google Scholar 

  • Balon, E.K., S.S. Crawford & A. Lelek. 1986. Fish communities of the upper Danube River (Germany, Austria) prior to the new Rhein-Main-Donau connection. Env. Biol. Fish. 15: 243–271.

    Google Scholar 

  • Bauchot, R., M.L. Bauchot, R. Platel & J.M. Ridet. 1977. Brains of Hawaiian tropical fishes: brain size and evolution. Copeia 1977: 42–46.

  • Bauchot, R., J.M. Ridet & M.L. Bauchot. 1989. The brain organization of butterflyfishes. Env. Biol. Fish. 25: 205–219.

    Google Scholar 

  • Blaxter, J.H.S. 1988. Sensory performance, behavior and ecology of fish. pp. 203–232. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Bleckmann, H. 1988. Prey identification and prey localization in surface-feeding fihs and fishing spiders. pp. 619–641. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Bock, W.J. 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217–227.

    Google Scholar 

  • Brabrand, A. 1985. Food of roach (Rutilus rutilus) and ide (Leuciscus idus): significance of diet shifts for interspecific competition in omnivorous fishes. Oecologia 66: 461–467.

    Article  Google Scholar 

  • Brandstätter, R. & K. Kotrschal. 1989. Life history of roach, Rutilus rutilus (Cyprinidae, Teleostei): a qualitative and quantitative study on the development of sensory brain areas. Brain, Behav. Evol. 34: 35–42.

    Google Scholar 

  • Brandstätter, R. & K. Kotrschal. 1990. Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus). Brain, Behav. Evol. 35: 195–211.

    Google Scholar 

  • Brosius, G. 1989. Spss/pc. Advanced statistics and tables. McGraw Hill, Hamburg. 350 pp.

    Google Scholar 

  • Bullock, T.H. 1983. Why study fish brains? pp. 361–368. In: R.E. Davis & R.G. Northcut (ed.) Fish Neurobiology, The University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Davis, B.J. & R.J. Miller. 1967. Brain patterns in minnows of the genus Hybopsis in relation to their feeding habits. Copeia 1987: 1–39.

  • Davis, R.E. & R.G. Northcutt (ed.). 1983. Fish neurobiology. Vol. 2. The University of Michigan Press, Ann Arbor. 370 pp.

  • Echteler, S. 1985. Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J. Comp. Physiol. A. 156: 267–280.

    Article  Google Scholar 

  • Evans, H.M. 1931. A comparative study of the brains in British cyprinoids in relation to their habits of feeding, with special reference to the anatomy of the medulla oblongata. Proc. R. Soc. Lond. B 108: 233–257.

    Google Scholar 

  • Evans, H.M. 1932. Further observations on the medulla oblongata in cyprinoids; and a comparative study of the medulla of clupeoids and cyprinoids with special reference to the acoustic tubercles. Proc. R. Soc. Lond. B 111: 247–280.

    Google Scholar 

  • Evans, H.M. 1935. The brain of Gadus, with special reference to the medulla oblongata and its variation according to feeding habits of different Gadidae-I. Proc. R. Soc. B. 117: 56–68.

    Google Scholar 

  • Evans, H.M. 1940. Brain and body of fish. A study of brain pattern in relation to hunting and feeding in fish. Technical Press, London. 224 pp.

    Google Scholar 

  • Evans, H.E. 1952. The correlation of brain patterns and feeding in four species of cyprinid fishes. J. Comp. Neurol. 97: 133–142.

    Article  PubMed  Google Scholar 

  • Finger, T.E. 1978. Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J. Comp. Neurol. 180: 691–706.

    Article  PubMed  Google Scholar 

  • Finger, T.E. 1983a. The gustatory system in teleost fish. pp. 285–311. In: R.G. Northcutt & R.E. Davis (ed.) Fish Neurobiology, Vol. 1, The University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Finger, T.E. 1983b. Organization of the teleost cerebellum. pp. 261–284. In: R.G. Northcutt & R.E. Davis (ed.) Fish Neurobiology, Vol. 1, The University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Finger, T.E. 1987. Gustatory nuclei and pathways in the central nervous system. pp. 331–354. In: T.E. Finger & W.L. Silver (ed.) Neurobiology of Taste and Smell, J. Wiley Publishers, New York.

    Google Scholar 

  • Finger, T.E. 1988. Organization of the chemosensory systems within the brains of bony fishes. pp. 339–363. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Geiger, W. 1956a. Quantitative Untersuchungen über das Gehirn der Knochenfische mit besonderer Berücksichtigung seines relativen Wachstums. I. Acta anat. 26: 121–163.

    PubMed  Google Scholar 

  • Geiger, W. 1956b. Quantitative Untersuchungen über das Gehirn der Knochenfische mit besonderer Berücksichtigung seines relativen Wachstums. II. Acta anat. 27: 324–350.

    Google Scholar 

  • Goldschmid, A. & K. Kotrschal. 1989. Ecomorphology: developments and concepts. Progr. Zool. 35: 501–512.

    Google Scholar 

  • Gomahr, A., M. Palzenberger & K. Kotrschal. 1992. Density and distribution of external taste buds in cyprinids. Env. Biol. Fish. 33: 125–134.

    Google Scholar 

  • Haslett, J.R. 1989. Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia 81: 361–363.

    Google Scholar 

  • Huber, R. & M.K. Rylander. 1992. Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). Env. Biol. Fish. 33: 153–165.

    Google Scholar 

  • Herrick, C.J. 1905. The central gustatory paths in the brains of bony fishes. J. Comp. Neurol. Psychol. 15: 375–456.

    Article  Google Scholar 

  • Ito, H. & R. Kishida. 1978. Afferent and efferent fiber connections of the carp torus longitudinalis. J. Comp. Neurol. 181: 465–476.

    Article  PubMed  Google Scholar 

  • Jolicoeur, P. & G. Baron. 1980. Brain center correlations among Chiroptera. Brain, Behav. Evol. 17: 419–431.

    Google Scholar 

  • Junger, H. & K. Kotrschal. 1989. Developmental changes in the optic tracts of cyprinids (Cyprindae, Teleostei). p. 191. In: N. Elsner & W. Singer (ed.) Dynamics and Plasticity in Neuronal Systems, Proceedings of the 17th G\:ottingen Neurobiology Conference, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrica 39: 31–36.

    Google Scholar 

  • Khanna, S.S. & H.R. Singh. 1966. Morphology of the teleostean brain in relation to feeding habits. Proc. Nat. Acad. Sci. India 336: 306–316.

    Google Scholar 

  • Kirka, A. 1963a. Brain structures in the Danube representatives of perciformes and the role of brain study for the systematic and ecology of fishes. Zool. Zhurnal 42: 400–407 (in Russian).

    Google Scholar 

  • Kirka, A. 1963b. Die äuβere Gehirnform des Donaunerflings (Rutilus pigus virgo He.) und ein Vergleich seines Gehirns mit der Donauplötze (Rutilus rutilus carpathorossicus Vladykov) und der Elbeplötze (Rutilus rutilus frici Misik). Zeitschrift für Fischerei und deren Hilfswissenschaften 11: 129–141.

    Google Scholar 

  • Kishida, R. 1979. Comparative study on the teleostean optic tectum. J. Hirnforsch. 20: 57–67.

    PubMed  Google Scholar 

  • Kotrschal, K. 1989. Trophic ecomorphology in eastern Pacific blennioid fishes: character transformation of oral jaws and associated change of their biological roles. Env. Biol. Fish. 24: 199–218.

    Google Scholar 

  • Kotrschal, K. & H. Junger. 1988. Patterns of brain morphology in mid-European Cyprinidae (Pisces, Teleostei): a quantitative histological study. J. Hirnforsch. 29: 341–352.

    PubMed  Google Scholar 

  • Kotrschal, K., H. Adam, R. Brandstätter, H. Junger, M. Zaunreiter & A. Goldschmid. 1990. Larval size constraints determine directional ontogenetic shifts in the visual system of teleosts. A mini-review. Z. Zool. Syst. Evolutionsforsch. 28: 166–182.

    Google Scholar 

  • Kotrschal, K., R. Brandstätter, A. Gomahr, H. Junger, M. Palzenberger & M. Zaunreiter. 1991. Brain and sensory systems. In: I.J. Winfield & J.S. Nelson (ed.) Cyprinid Fishes, Systematics, Biology and Exploitation Chapman and Hall, London.

    Google Scholar 

  • Ladiges, W. & D. Vogt. 1965. Die Süβwasserfische Europas. Paul Parey, Hamburg. 299 pp.

    Google Scholar 

  • Lammens, E.H.R.R., J. Geursen & P.J. McGillavry. 1987. Diet shifts, feeding efficiency and coexistence of bream (Abramis brama), roach (Rutilus rutilus) and white bream (Blicca bjoercna) in hypertrophic lakes. pp. 153–162. In: S. Kullander & B. Fernholm (ed.) Proceedings of the V Congress of European Ichthyologists, Stockholm.

  • Lythgoe, J.N. 1988. Light and vision in the aquatic environment. pp. 57–82. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals. Springer Verlag, New York.

    Google Scholar 

  • Maitland, P.S. 1981. Freshwater fishes of Britain and Europe. Hamlyn, London. 256 pp.

    Google Scholar 

  • Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup & L. Wolpert. 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60: 260–287.

    Google Scholar 

  • Mayser, P. 1881. Vergleichend anatomische Studien über das Gehirn der Knochenfische mit besonderer Berücksichtigung der Cyprinoiden. Arch. wiss. Zool. 36: 259–366.

    Google Scholar 

  • McCormick, C.A. & M.R. Braford, Jr. 1988. Central connections of the octavolateralis system: evolutionary considerations. pp. 773–756. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Miller, R.J. & H.E. Evans. 1965. External morphology of the brains and lips in catastomid fishes. Copeia 1965: 467–487.

  • Montgomery, J.C. & J.A. Macdonald. 1987. Sensory tuning of lateral line receptors in Antarctic fish to the movement of planktonic prey. Science 235: 195–196.

    Google Scholar 

  • Morita, Y. & T.E. Finger. 1985a. Topography and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J. Comp. Neurol. 238: 187–201.

    Article  PubMed  Google Scholar 

  • Morita, Y. & T.E. Finger. 1985b. Reflex connections of the facial and vagal gustatory systems in the brain stem of the bullhead catfish, Ictalurus nebulosus. J. Comp. Neurol. 231: 547–558.

    Article  PubMed  Google Scholar 

  • Morita, Y. & T.E. Finger. 1987. Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, Carassius auratus. J. Comp. Neurol. 264: 231–249.

    Article  PubMed  Google Scholar 

  • Morita, Y. & H. Masai. 1980. Central gustatory paths in the crucian carp, Carassius carassius. J. Comp. Neurol. 191: 119–132.

    Article  PubMed  Google Scholar 

  • Nelson, J.S. 1984. Fishes of the world. J. Wiley & Sons, New York. 523 pp.

    Google Scholar 

  • Northcutt, R.G. 1988 Sensory and other neural traits and the adaptationist program: mackerels of San Marco? pp. 869–883. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Northcutt, R.G. & R.E. Davis (ed.). 1983. Fish neurobiology, Vol. 1. The Michigan University Press, Ann Arbor. 345 pp.

  • Northcutt, R.G. & M.F. Wullimann. 1988. The visual system in teleost fishes: morphological patterns and trends. pp. 515–552. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Northmore, D.P.M. 1984. Visual and saccadic activity in the goldfish torus longitudinalis. J. Comp. Physiol. A 155: 333–340.

    Article  Google Scholar 

  • Northmore, D.P.M., B. Williams & H. Vanegas. 1983. The teleostean torus longitudinalis: responses related to eye movements, visuotopic mapping, and functional relations with the optic tectum. J. Comp. Physiol. A 150: 39–50.

    Article  Google Scholar 

  • Pagel, M.D. & P.H. Harvey. 1989. Taxonomic differences in the scaling of brain on body weight among mammals. Science 244: 1589–1593.

    PubMed  Google Scholar 

  • Peter, R.E. 1979. The brain and feeding behavior. pp. 121–159. In: Hoar & Randall (ed.) Fish Physiology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Pirlot, P. & P. Jolicoeur. 1982. Correlations between major brain regions in Chiroptera. Brain. Behav. Evol. 20: 172–181.

    PubMed  Google Scholar 

  • Ridet, J.M., R. Bauchot, M. Diagne & R. Platel. 1977. Croissance ontogenetique et phylogenetique de l&encephale des Teleosteens. Cahiers Biol. Marine 18: 163–176.

    Google Scholar 

  • Schemmel, C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z. Morph. Tiere 61: 255–305.

    Article  Google Scholar 

  • Schiemer, F. 1985. Die Bedeutung der Augewässer als Schutzzonen für die Fischfauna. Österr. Wasserwirtschaft 37: 239–245.

    Google Scholar 

  • Schiemer, F. 1988. Gefährdete Cypriniden — Indikatoren für die ökologische Intaktheit von Fluβsystemen. Natur und Landschaft 63: 370–373.

    Google Scholar 

  • Schnitzlein, H.N. 1964. Correlation of habit and structure in the fish brain. Amer. Zool. 4: 21–32.

    Google Scholar 

  • Sibbing, F.A. 1988. Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Env. Biol. Fish. 22: 161–178.

    Google Scholar 

  • Simpson, G.G. 1944. Tempo and mode in evolution. Columbia University Press, New York. 420 pp.

    Google Scholar 

  • Snow, J.L. & M.K. Rylander. 1982. A quantitative study of the optic system of butterflyfishes (family Chaetodontidae). J. Hirnforsch. 23: 121–125.

    PubMed  Google Scholar 

  • Sokal, R.R. & F.J. Rohlf. 1981. Biometry, 2nd ed. Freeman, San Francisco. 859 pp.

    Google Scholar 

  • Stephan, H. 1960. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. A. wiss. Zool. 164: 143–172.

    Google Scholar 

  • Stephan, H. 1967. Quantitative Vergleiche zur phylogenetischen Entwicklung des Gehirns der Primaten mit Hilfe der Progressionsindices. Mitt. Max-Planck Ges. 2: 63–68.

    Google Scholar 

  • Stephan, H. & P. Pirlot. 1970. Volumetric comparison of brain structures in bats (an attempt to a phylogenetic interpretation). Bijdr. Dierkunde 40: 95–98.

    Google Scholar 

  • Uchihashi, K. 1953. Ecological study of Japanese teleosts in relation to brain morphology. Bull. Jap. Sea Regional Fish. Res. Lab. 2: 1–166.

    Google Scholar 

  • Vanegas, H. 1983. Organization and physiology of the teleostean optic tectum. pp. 43–87. In: R.E. Davis & R.G. Northcutt (ed.) Fish Neurobiology, The University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Werner, E.E. 1984. The mechanisms of species interactions and community organization in fishes. pp. 360–383. In: D.R. Strong, D. Simberloff, L.G. Abele & A.B. Thistle (ed.) Ecological Communities, Conceptual Issues and Evidence, Princeton University Press, Princeton.

    Google Scholar 

  • Wieser, W. 1986. Die Ökophysiologie der Cyprinidenfauna österreichischer Gewässer. Ein Forschungsschwerpunkt des Fonds zur Förderung der wissenschaftlichen Forschung. Österreichs Fischerei 36: 88–93.

    Google Scholar 

  • Winkelmann, E. & L. Winkelmann. 1968. Vergleichend histologische Untersuchungen zur funktionellen Morphologie des Tectum opticum verschiedener Teleostier. J. Hirnforsch. 10: 1–16.

    PubMed  Google Scholar 

  • Wullimann, M.F. & R.G. Northcutt. 1989. Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J. Comp. Neurol. 289: 554–567.

    Article  PubMed  Google Scholar 

  • Zaunreiter, M. & K. Kotrschal. 1989. Shifting retinal parameters during growth in roach (Rutilus rutilus, Cyprinidae, Teleostei). p. 192. In: N. Elsner & W. Singer (ed.) Dynamics and Plasticity in Neuronal Systems, Proceedings of the 17th G\:ottingen Neurobiology Conference, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Zaunreiter, M., H. Junger & K. Kotrschal. 1991. Ecomorphology of the cyprinid retina: a quantitative histological study on ontogenetic shifts and interspecific variation. Vision. Res. 31: 383–394.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotrschal, K., Palzenberger, M. Neuroecology of cyprinids: comparative, quantitative histology reveals diverse brain patterns. Environ Biol Fish 33, 135–152 (1992). https://doi.org/10.1007/BF00002560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002560

Key words

Navigation