Skip to main content

Implementation of Hybrid Algorithm for the UAV Images Preprocessing Based on Embedded Heterogeneous System: The Case of Precision Agriculture

  • Conference paper
  • First Online:
Enabling Machine Learning Applications in Data Science

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

The principle aim of precision farming is to increase the yields of a crop while reducing the consumption of energy and inputs. For this, precision farming operates through the use of new technologies, and the idea is to “produce more with less resources.” The adoption of analysis and decision-making technologies by farmers makes it possible to precisely determine the water, fertilizer, and phytosanitary product needs of crops, that is why it becomes possible to optimize the use of chemical inputs and equipment. These technologies are multiple, such as the Internet of Things which is based on collecting information from sensors but with certain disadvantages, such as limited computing power and limited spaces of crops. But other approaches can solve the problem of precision farming, for instance, artificial intelligence or image processing. In a real case concretization, we discover that an important volume of the database may be lost because of noise and blur of UAV’s camera, and if we correct noised images, we may be more closed to good decisions, that is the reason why this paper will propose a deblurring method of blurred and noised images to improve database content, which will be a proposed additional block to the different algorithms used in precision agriculture. We also propose a hybrid algorithm to eliminate the different noises before processing the algorithms. In our implementation, we used the heterogeneous XU4 system based on a CPU-GPU and the OpenCL parallel programming language. The obtained execution time allowed us to process 50 frames/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Granados F (2011) Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res 51:1–11. https://doi.org/10.1111/j.1365-3180.2010.00829.x

    Article  Google Scholar 

  2. Perez-Jimenez A, López F, Benlloch-Dualde J-V, Christensen S (2000) Colour and shape analysis techniques for weed detection in cereal fields. Comput Electron Agric 25:197–212. https://doi.org/10.1016/S0168-1699(99)00068-X

    Article  Google Scholar 

  3. El-Faki MS, Zhang N, Peterson DE (2000) Weed detection using color machine vision. Trans ASABE (Am Soc Agric Biol Eng) 43:1969–1978. https://doi.org/10.13031/2013.3103

  4. Thompson JF, Stafford J, Miller P (1991) Potential for automatic weed detection selective herbicide application. Crop Protect 10:254–259. https://doi.org/10.1016/0261-2194(91)90002-9

    Article  Google Scholar 

  5. Rahnemoonfar M, Sheppard C (2017) Deep count: fruit counting based on deep simulated learning. Sensors (Basel, Switzerland) 17.https://doi.org/10.3390/s17040905

  6. Maldonado Jr W, Barbosa JC (2016) Automatic green fruit counting in orange trees using digital images. Comput Electron Agric 127:572–581. https://doi.org/10.1016/j.compag.2016.07.023

  7. Chen SW, Skandan S, Dcunha S, Das J, Okon E, Qu C, Taylor C, Kumar V (2017) Counting apples and oranges with deep learning: a data driven approach. IEEE Robot Autom Lett 1–1. https://doi.org/10.1109/LRA.2017.2651944.

  8. Song Y, Glasbey CA, Horgan GW, Polder G, Dieleman J, van der Heijden G (2014) Automatic fruit recognition and counting from multiple images. Biosys Eng 118:203–215. https://doi.org/10.1016/j.biosystemseng.2013.12.008

    Article  Google Scholar 

  9. Latif R, Saddik A, Elouardi A (2019) Evaluation of agricultural precision algorithms on UAV images 1–4. https://doi.org/10.1109/ICCSRE.2019.8807604

  10. Ternoclic Homepage. https://ternoclic.com/infos/explication-agriculture-de-precision/

  11. Rafał P, Stuczynski T, Borzecka M (2012) The suitability of an unmanned aerial vehicle (UAV) for the evaluation of experimental fields and crops. Zemdirbyste 990014:431–436

    Google Scholar 

  12. Sa I, Chen Z, Popovic M, Khanna R, Liebisch F, Nieto J, Siegwart R (2017) WeedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot Autom Lett. https://doi.org/10.1109/LRA.2017.2774979

  13. Gnädinger F, Schmidhalter U (2017) Digital Counts of maize plants by unmanned aerial vehicles (UAVs). Remote Sens 9:544. https://doi.org/10.3390/rs9060544

    Article  Google Scholar 

  14. Khanna A, Kaur S (2019) Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture. Comput Electron Agric 157:218–231. https://doi.org/10.1016/j.compag.2018.12.039

    Article  Google Scholar 

  15. Popovic T, Latinović N, Pesic A, Zecevic Z, Krstajic B, Đukanović S (2017) Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: a case study. Comput Electron Agric 2017:255–265. https://doi.org/10.1016/j.compag.2017.06.008

    Article  Google Scholar 

  16. Shkanaev AY, Sholomov DL, Nikolaev DP (2020) Unsupervised domain adaptation for DNN-based automated harvesting 112. https://doi.org/10.1117/12.2559514

  17. Aggelopoulou K, Bochtis D, Fountas S, Swain K, Gemtos T, Nanos G (2011) Yield prediction in apple orchards based on image processing. Precis Agric 12:448–456. https://doi.org/10.1007/s11119-010-9187-0

    Article  Google Scholar 

  18. Honkavaara E, Saari H, Kaivosoja J, Pölönen I, Hakala T, Litkey P, Mäkynen J, Pesonen L (2013) Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens 5:5006–5039. https://doi.org/10.3390/rs5105006

    Article  Google Scholar 

  19. Primicerio J, Di Gennaro SF, Fiorillo E, Genesio L, Lugato E, Matese A, Vaccari FP (2012) A flexible unmanned aerial vehicle for precision agriculture. Precis Agric. https://doi.org/10.1007/s11119-012-9257-6

  20. Liu R, Li Z, Jia J (2008) Image partial blur detection and classification. IEEE Int Conf Comput Vis Pattern Recogn 1–8. https://doi.org/10.1109/CVPR.2008.4587465

  21. Luo G, Chen G, Tian L, Qin Ke, Qian S-E (2016) Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Can J Remote Sens 42:00–00. https://doi.org/10.1080/07038992.2016.1160772

    Article  Google Scholar 

  22. Ben-Ezra M, Nayar S (2004) Motion-based motion deblurring. IEEE Trans Pattern Anal Mach Intell 26:689–698. https://doi.org/10.1109/TPAMI.2004.1

    Article  Google Scholar 

  23. Agarwal S, Singh OP, Nagaria D (2017) Deblurring of MRI image using blind and non-blind deconvolution methods. Biomed Pharmacol J 10:1409–1413. https://doi.org/10.13005/bpj/1246

  24. Almeida M, Figueiredo M (2013) Parameter estimation for blind and non-blind deblurring using residual whiteness measures. IEEE Trans Image Process Publ IEEE Signal Process Soc 22.https://doi.org/10.1109/TIP.2013.2257810

  25. Jia J (2007) Single image motion deblurring using transparency. CVPR 1–8.https://doi.org/10.1109/CVPR.2007.383029

  26. Jin M, Roth S, Favaro P (2018) Normalized blind deconvolution: 15th European conference, Munich, Germany, proceedings, part VII.https://doi.org/10.1007/978-3-030-01234-2_41

  27. Bar L, Kiryati N, Sochen N (2006) Image deblurring in the presence of impulsive noise. Int J Comput Vis. https://doi.org/10.1007/s11263-006-6468-1

  28. Schuler CJ, Christian Burger H, Harmeling S, Scholkopf B (2013) A machine learning approach for non-blind image deconvolution. In: Proceedings/CVPR, IEEE computer society conference on computer vision and pattern recognition, pp 1067–1074. https://doi.org/10.1109/CVPR.2013.142.

  29. Machine Version Study guide: https://faculty.salina.k-state.edu/tim/mVision/freq-domain/image_DFT.html

  30. Menash J (2019) Sustainable development: meaning, history, principles, pillars, and implications for human action: literature review. Cogent Soc Sci 5. https://doi.org/10.1080/23311886.2019.1653531

  31. Kusnandar K, Brazier FM, Kooten O (2019) Empowering change for sustainable agriculture: the need for participation. Int J Agric Sustain 1–16. https://doi.org/10.1080/14735903.2019.1633899

  32. Dicoagroecologie Homepage. https://dicoagroecologie.fr/encyclopedie/agriculture-de-precision/. last accessed 21 Nov 2016

  33. Be Api Homepage. https://beapi.coop/

  34. Miles C (2019) The combine will tell the truth: on precision agriculture and algorithmic rationality. Big Data Soc 6:205395171984944. https://doi.org/10.1177/2053951719849444

    Article  Google Scholar 

  35. Soubry I, Patias P, Tsioukas V (2017) Monitoring vineyards with UAV and multi-sensors for the assessment of water stress and grape maturity. J Unmanned Veh Syst 5.https://doi.org/10.1139/juvs-2016-0024

  36. Chen J (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky? Golay filter. Remote Sens Environ 91.https://doi.org/10.1016/S0034-4257(04)00080-X

  37. Torres-Sánchez J, López-Granados F, Serrano N, Arquero O, Peña-Barragán JM (2015) High-Throughput 3-D monitoring of agricultural-Tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE 10:E0130479. https://doi.org/10.1371/journal.pone.0130479

    Article  Google Scholar 

  38. Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa J (2017) Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 2017:1110. https://doi.org/10.3390/rs9111110

    Article  Google Scholar 

  39. Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153.https://doi.org/10.1016/j.agwat.2015.01.020

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Latif, R., Jamad, L., Saddik, A. (2021). Implementation of Hybrid Algorithm for the UAV Images Preprocessing Based on Embedded Heterogeneous System: The Case of Precision Agriculture. In: Hassanien, A.E., Darwish, A., Abd El-Kader, S.M., Alboaneen, D.A. (eds) Enabling Machine Learning Applications in Data Science. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-6129-4_11

Download citation

Publish with us

Policies and ethics