Skip to main content

Introduction to Environmental Harmful Factors

  • Chapter
  • First Online:
Environment and Female Reproductive Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1300))

  • 1019 Accesses

Abstract

In this Chapter, we systematically and comprehensively described various environmental harmful factors. They were classified into four aspects: physical factors, chemical factors, biological factors, and physiological and psychological stress factors. Their classification, modes of presence, toxicity and carcinogenicity, routes of exposure to human and toxic effects on the female reproductive health were introduced. It is expected that the exposure routes could be controlled and eliminated, and the pathogenic mechanism of environmental harmful factors should be investigated and explained to protect female reproductive health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger A, Lichtscheidl I. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci Total Environ. 2019;653:1458–512.

    Article  CAS  PubMed  Google Scholar 

  2. Bates JT, Fang T. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition. Sour Health Eff. 2019;53(8):4003–19.

    CAS  Google Scholar 

  3. Krutmann J, et al. The skin aging exposome. J Dermatol Sci. 2017;85(3):152–61.

    Article  PubMed  Google Scholar 

  4. Schraufnagel DE, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 2: air pollution and organ systems. Chest. 2019;155(2):417–26.

    Article  PubMed  Google Scholar 

  5. Ding T, Yan A, Liu K. What is noise-induced hearing loss? Br J Hosp Med (Lond). 2019;80(9):525–9.

    Article  Google Scholar 

  6. Graydon K, et al. Global burden of hearing impairment and ear disease. J Laryngol Otol. 2019;133(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  7. Lie A, et al. Occupational noise exposure and hearing: a systematic review. Int Arch Occup Environ Health. 2016;89(3):351–72.

    Article  PubMed  Google Scholar 

  8. Generaal E, et al. Not urbanization level but socioeconomic, physical and social neighbourhood characteristics are associated with presence and severity of depressive and anxiety disorders. Psychol Med. 2019;49(1):149–61.

    Article  PubMed  Google Scholar 

  9. Kempen EV, et al. WHO environmental noise guidelines for the European region: a systematic review on environmental noise and cardiovascular and metabolic effects: a summary. Int J Environ Res Public Health. 2018;15(2):379.

    Article  PubMed Central  Google Scholar 

  10. Eze IC, et al. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study. Int J Epidemiol. 2017;46(4):1115–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang Z, et al. Menstrual disorders and occupational exposures among female nurses: a nationwide cross-sectional study. Int J Nurs Stud. 2019;95:49–55.

    Article  PubMed  Google Scholar 

  12. Rasmussen S, et al. Construction noise decreases reproductive efficiency in mice. J Am Assoc Lab Anim Sci. 2009;48(4):363–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lai S-K, et al. A human-based study of hand–arm vibration exposure limits for construction workers. J Vib Eng Technol. 2019;7(4):379–88.

    Article  Google Scholar 

  14. Lamb S, Kwok KCS. Sopite syndrome in wind-excited buildings: productivity and wellbeing impacts. Build Res Inf. 2017;45(3–4):347–58.

    Article  Google Scholar 

  15. Lamb S, Kwok KCS. The effects of motion sickness and sopite syndrome on office workers in an 18-month field study of tall buildings. J Wind Eng Ind Aerodyn. 2019;186:105–22.

    Article  Google Scholar 

  16. Seidel H. Selected health risks caused by long-term, whole-body vibration. Am J Ind Med. 1993;23(4):589–604.

    Article  CAS  PubMed  Google Scholar 

  17. Atanasov NA, et al. Characterization of train-induced vibration and its effect on fecal corticosterone metabolites in mice. J Am Assoc Lab Anim Sci. 2015;54(6):737–44.

    PubMed  PubMed Central  Google Scholar 

  18. Zhang P, et al. The effect of gamma-ray-induced central nervous system injury on peripheral immune response: an in vitro and in vivo study. Radiat Res. 2019;192(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  19. Richardson DB, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ. 2015;351:h5359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ray JG, et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    Article  PubMed  Google Scholar 

  21. Shirangi A, Fritschi L, Holman CD. Maternal occupational exposures and risk of spontaneous abortion in veterinary practice. Occup Environ Med. 2008;65(11):719–25.

    Article  CAS  PubMed  Google Scholar 

  22. Koppel T, et al. Radiofrequency radiation from nearby mobile phone base stations-a case comparison of one low and one high exposure apartment. Oncol Lett. 2019;18(5):5383–91.

    PubMed  PubMed Central  Google Scholar 

  23. Akefe IO, et al. C-glycosyl flavonoid orientin alleviates learning and memory impairment by radiofrequency electromagnetic radiation in mice via improving antioxidant defence mechanism. Asian Pac J Trop Biomed. 2019;9(12):518.

    Article  CAS  Google Scholar 

  24. Yu G, et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats. Sci Total Environ. 2020;698:133860.

    Article  CAS  PubMed  Google Scholar 

  25. Hudson L, et al. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J. 2020;34(3):3874–83.

    Article  CAS  PubMed  Google Scholar 

  26. Lucas RM, Yazar S. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem Photobiol Sci. 2019;18(3):641–80.

    Article  CAS  PubMed  Google Scholar 

  27. Lin S, et al. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology. 2009;20(5):738–46.

    Article  PubMed  Google Scholar 

  28. Gernand E, König S, Kipp C. Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. J Dairy Sci. 2019;102(7):6660–71.

    Article  CAS  PubMed  Google Scholar 

  29. Abrams JY, et al. Increased Kawasaki disease incidence associated with higher precipitation and lower temperatures, Japan, 1991-2004. Pediatr Infect Dis J. 2018;37(6):526–30.

    Article  PubMed  Google Scholar 

  30. Sargis RM, Simmons RA. Environmental neglect: endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors. Diabetologia. 2019;62(10):1811–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lohmann R, et al. Global fate of POPs: current and future research directions. Environ Pollut. 2007;150(1):150–65.

    Article  CAS  PubMed  Google Scholar 

  32. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.

    PubMed Central  Google Scholar 

  33. Yi ZG, et al. Characteristics of PAHs in the atmosphere in winter and summer in the urban and suburban of Fuzhou. Huan Jing Ke Xue. 2013;34(4):1252–7.

    PubMed  Google Scholar 

  34. Park JS, Wade TL, Sweet S. Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos Environ. 2001;35(19):3241–9.

    Article  CAS  Google Scholar 

  35. Li X, et al. Characterization of polycyclic aromatic hydrocarbons in fog-rain events. J Environ Monit. 2011;13(11):2988–93.

    Article  CAS  PubMed  Google Scholar 

  36. Gao B, et al. Source apportionment of atmospheric PAHs and their toxicity using PMF: impact of gas/particle partitioning. Atmos Environ. 2015;103:114–20.

    Article  CAS  Google Scholar 

  37. Kim KH, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang Y, et al. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China. Environ Monit Assess. 2011;183(1–4):139–50.

    Article  CAS  PubMed  Google Scholar 

  39. Wild SR, Jones KC. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut. 1995;88(1):91–108.

    Article  CAS  PubMed  Google Scholar 

  40. Ma WL, et al. Polycyclic aromatic hydrocarbons in Chinese surface soil: occurrence and distribution. Environ Sci Pollut Res Int. 2015;22(6):4190–200.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review. Sci Total Environ. 2017;605-606:1011–20.

    Article  CAS  PubMed  Google Scholar 

  42. Mojiri A, et al. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ. 2019;696:133971.

    Article  CAS  PubMed  Google Scholar 

  43. Patrolecco L, et al. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere. 2010;81(11):1386–92.

    Article  CAS  PubMed  Google Scholar 

  44. Oliveira M, et al. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: a review on indoor and outdoor exposure levels, major sources and health impacts. Environ Int. 2019;124:180–204.

    Article  CAS  PubMed  Google Scholar 

  45. Ali N, et al. Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation. Sci Total Environ. 2017;601-602:478–84.

    Article  CAS  PubMed  Google Scholar 

  46. Idowu O, et al. Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int. 2019;123:543–57.

    Article  CAS  PubMed  Google Scholar 

  47. Bolden AL, et al. Polycyclic aromatic hydrocarbons and female reproductive health: a scoping review. Reprod Toxicol. 2017;73:61–74.

    Article  CAS  PubMed  Google Scholar 

  48. Niu X, et al. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM(2.5) in the Beijing-Tianjin-Hebei region. Environ Pollut. 2017;231(Pt 1):1075–84.

    Article  CAS  PubMed  Google Scholar 

  49. Baird WM, Hooven LA, Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen. 2005;45(2–3):106–14.

    Article  CAS  PubMed  Google Scholar 

  50. Andersson JT, Achten C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Compd. 2015;35(2–4):330–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Briggs D. Environmental pollution and the global burden of disease. Br Med Bull. 2003;68:1–24.

    Article  CAS  PubMed  Google Scholar 

  52. Iida M, Takemoto K. A network biology-based approach to evaluating the effect of environmental contaminants on human interactome and diseases. Ecotoxicol Environ Saf. 2018;160:316–27.

    Article  CAS  PubMed  Google Scholar 

  53. Staples CA, et al. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36(10):2149–73.

    Article  CAS  PubMed  Google Scholar 

  54. Im J, Löffler FE. Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol. 2016;50(16):8403–16.

    Article  CAS  PubMed  Google Scholar 

  55. Valentino R, et al. Bisphenol A environmental exposure and the detrimental effects on human metabolic health: is it necessary to revise the risk assessment in vulnerable population? J Endocrinol Investig. 2016;39(3):259–63.

    Article  CAS  Google Scholar 

  56. Russo G, et al. Occurrence of Bisphenol A and its analogues in some foodstuff marketed in Europe. Food Chem Toxicol. 2019;131:110575.

    Article  CAS  PubMed  Google Scholar 

  57. Mercogliano R, Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: a review. Food Chem Toxicol. 2018;114:98–107.

    Article  CAS  PubMed  Google Scholar 

  58. Sifakis S, et al. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70.

    Article  CAS  PubMed  Google Scholar 

  59. Martin EM, Fry RC. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.

    Article  PubMed  Google Scholar 

  60. Strakovsky RS, Schantz SL. Using experimental models to assess effects of bisphenol A (BPA) and phthalates on the placenta: challenges and perspectives. Toxicol Sci. 2018;166(2):250–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomza-Marciniak A, et al. Effect of bisphenol A on reproductive processes: a review of in vitro, in vivo and epidemiological studies. J Appl Toxicol. 2018;38(1):51–80.

    Article  CAS  PubMed  Google Scholar 

  62. Ejaredar M, et al. Bisphenol A exposure and children’s behavior: a systematic review. J Expo Sci Environ Epidemiol. 2017;27(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  63. Rancière F, et al. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence. Environ Health. 2015;14:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rahmani S, et al. Bisphenol A: what lies beneath its induced diabetes and the epigenetic modulation? Life Sci. 2018;214:136–44.

    Article  CAS  PubMed  Google Scholar 

  65. Nadal A, et al. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol. 2017;13(9):536–46.

    Article  CAS  PubMed  Google Scholar 

  66. Thent ZC, Froemming GRA, Muid S. Bisphenol A exposure disturbs the bone metabolism: an evolving interest towards an old culprit. Life Sci. 2018;198:1–7.

    Article  CAS  PubMed  Google Scholar 

  67. Xie MY, et al. Exposure to bisphenol A and the development of asthma: a systematic review of cohort studies. Reprod Toxicol. 2016;65:224–9.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Z, Liu H, Liu S. Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Adv Sci (Weinh). 2017;4(2):1600248.

    Article  CAS  Google Scholar 

  69. Dempsey JL, Cui JY. Long non-coding RNAs: a novel paradigm for toxicology. Toxicol Sci. 2017;155(1):3–21.

    Article  CAS  PubMed  Google Scholar 

  70. Doshi T, D'Souza C, Vanage G. Aberrant DNA methylation at Igf2-H19 imprinting control region in spermatozoa upon neonatal exposure to bisphenol A and its association with post implantation loss. Mol Biol Rep. 2013;40(8):4747–57.

    Article  CAS  PubMed  Google Scholar 

  71. Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.

    Article  CAS  PubMed  Google Scholar 

  72. Giakoumelou S, et al. The role of infection in miscarriage. Hum Reprod Update. 2016;22(1):116–33.

    Article  CAS  PubMed  Google Scholar 

  73. Sharma R, et al. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jaworek H, et al. Prevalence of human papillomavirus infection in oocyte donors and women treated for infertility: an observational laboratory-based study. Eur J Obstet Gynecol Reprod Biol X. 2019;4:100068.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Subtil D, et al. Early clindamycin for bacterial vaginosis in pregnancy (PREMEVA): a multicentre, double-blind, randomised controlled trial. Lancet. 2018;392(10160):2171–9.

    Article  CAS  PubMed  Google Scholar 

  76. Donders GG, et al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG. 2009;116(10):1315–24.

    Article  CAS  PubMed  Google Scholar 

  77. Perino A, et al. Human papillomavirus infection in couples undergoing in vitro fertilization procedures: impact on reproductive outcomes. Fertil Steril. 2011;95(5):1845–8.

    Article  PubMed  Google Scholar 

  78. Spandorfer SD, et al. Prevalence of cervical human papillomavirus in women undergoing in vitro fertilization and association with outcome. Fertil Steril. 2006;86(3):765–7.

    Article  PubMed  Google Scholar 

  79. Gomez LM, et al. Placental infection with human papillomavirus is associated with spontaneous preterm delivery. Hum Reprod. 2008;23(3):709–15.

    Article  CAS  PubMed  Google Scholar 

  80. Pfeifer C, Bunders MJ. Maternal HIV infection alters the immune balance in the mother and fetus; implications for pregnancy outcome and infant health. Curr Opin HIV AIDS. 2016;11(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  81. Bunders MJ, et al. Fetal exposure to HIV-1 alters chemokine receptor expression by CD4+T cells and increases susceptibility to HIV-1. Sci Rep. 2014;4:6690.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39(4):633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Janier M, et al. 2014 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol. 2014;28(12):1581–93.

    Article  CAS  PubMed  Google Scholar 

  84. Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev. 2002;15(4):680–715.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baudin M, et al. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet Glob Health. 2016;4(11):e864–71.

    Article  PubMed  Google Scholar 

  86. Uchide N, et al. Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediat Inflamm. 2012;2012:270670.

    Article  CAS  Google Scholar 

  87. Littauer EQ, Esser ES. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathog. 2017;13(11):e1006757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. ACMSF. Report on risk profile in relation to toxoplasma in the food chain. Acta Acad Med Cpaf. 2012;7(7):49–61, illust.

    Google Scholar 

  89. Alvarado-Esquivel C, et al. Miscarriage history and toxoplasma gondii infection: a cross-sectional study in women in Durango City, Mexico. Eur J Microbiol Immunol (Bp). 2014;4(2):117–22.

    Article  CAS  Google Scholar 

  90. Vado-Solís IA, et al. Toxoplasma gondii presence in women with spontaneous abortion in Yucatan, Mexico. J Parasitol. 2013;99(2):383–5.

    Article  PubMed  Google Scholar 

  91. Lambalk CB, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23(5):560–79.

    Article  CAS  PubMed  Google Scholar 

  92. Easterlin MC, et al. Association of team sports participation with long-term mental health outcomes among individuals exposed to adverse childhood experiences. JAMA Pediatr. 2019;173(7):681–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ångerud K, et al. Adverse childhood experiences and depressive symptomatology among pregnant women. Acta Obstet Gynecol Scand. 2018;97(6):701–8.

    Article  PubMed  Google Scholar 

  94. Field T. Prenatal depression effects on early development: a review. Infant Behav Dev. 2011;34(1):1–14.

    Article  PubMed  Google Scholar 

  95. Young-Wolff KC, et al. Adverse childhood experiences and mental and behavioral health conditions during pregnancy: the role of resilience. J Womens Health (Larchmt). 2019;28(4):452–61.

    Article  Google Scholar 

  96. Maconochie N, et al. Risk factors for first trimester miscarriage--results from a UK-population-based case-control study. BJOG. 2007;114(2):170–86.

    Article  CAS  PubMed  Google Scholar 

  97. Master JS, et al. Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development. Reproduction. 2015;149(5):497–510.

    Article  CAS  PubMed  Google Scholar 

  98. Ge ZJ, et al. Oocyte ageing and epigenetics. Reproduction. 2015;149(3):R103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gaskins AJ, et al. Association of fecundity with changes in adult female weight. Obstet Gynecol. 2015;126(4):850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Steegers-Theunissen RP, et al. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. 2013;19(6):640–55.

    Article  CAS  PubMed  Google Scholar 

  101. American College of Obstetricians and Gynecologists. ACOG Committee opinion no. 650: physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol. 2015;126(6):e135–42.

    Article  Google Scholar 

  102. Terzioglu F. Investigation into effectiveness of counseling on assisted reproductive techniques in Turkey. J Psychosom Obstet Gynaecol. 2001;22(3):133–41.

    Article  CAS  PubMed  Google Scholar 

  103. Mutsaerts MA, et al. The influence of maternal and paternal factors on time to pregnancy--a Dutch population-based birth-cohort study: the GECKO Drenthe study. Hum Reprod. 2012;27(2):583–93.

    Article  CAS  PubMed  Google Scholar 

  104. Berga S, Naftolin F. Neuroendocrine control of ovulation. Gynecol Endocrinol. 2012;28(Suppl 1):9–13.

    Article  CAS  PubMed  Google Scholar 

  105. Schliep KC, et al. Perceived stress, reproductive hormones, and ovulatory function: a prospective cohort study. Epidemiology. 2015;26(2):177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rockwell LC, Keyes LE, Moore LG. Chronic hypoxia diminishes pregnancy-associated DNA synthesis in Guinea pig uteroplacental arteries. Placenta. 2000;21(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  107. Gonzales GF, Ortiz I. Age at menarche at sea level and high altitude in Peruvian women of different ethnic background. Am J Hum Biol. 1994;6(5):637–40.

    Article  PubMed  Google Scholar 

  108. Crognier E, Villena M, Vargas E. Reproduction in high altitude Aymara: physiological stress and fertility planning? J Biosoc Sci. 2002;34(4):463–73.

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh D, Kumar R, Pal K. Individual variation in response to simulated hypoxic stress of rats. Indian J Exp Biol. 2012;50(10):744–8.

    PubMed  Google Scholar 

  110. Dosek A, et al. High altitude and oxidative stress. Respir Physiol Neurobiol. 2007;158(2–3):128–31.

    Article  CAS  PubMed  Google Scholar 

  111. Lorca RA, et al. High altitude reduces no-dependent myometrial artery vasodilator response during pregnancy. Hypertension. 2019;73(6):1319–26.

    Article  CAS  PubMed  Google Scholar 

  112. De Fleurian G, et al. Occupational exposures obtained by questionnaire in clinical practice and their association with semen quality. J Androl. 2009;30(5):566–79.

    Article  PubMed  Google Scholar 

  113. Tielemans E, et al. Paternal occupational exposures and embryo implantation rates after IVF. Fertil Steril. 2000;74(4):690–5.

    Article  CAS  PubMed  Google Scholar 

  114. Lancranjan I, et al. Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health. 1975;30(8):396–401.

    Article  CAS  PubMed  Google Scholar 

  115. Xu M, et al. An investigation of reproductive health and related influencing factors in female staff in six industries in seven provinces in China. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2016;34(12):924–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J., Tian, P., Xu, Z., Zhang, H. (2021). Introduction to Environmental Harmful Factors. In: Zhang, H., Yan, J. (eds) Environment and Female Reproductive Health. Advances in Experimental Medicine and Biology, vol 1300. Springer, Singapore. https://doi.org/10.1007/978-981-33-4187-6_1

Download citation

Publish with us

Policies and ethics