Skip to main content

Non-chemical Weed Management for Field Crops

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Weeds are unwanted plants that enhance the production cost of crops, which causes economic loss to growers. Historically, hand-weeding is one of the oldest methods to control weed, and all other weed control methods during earlier times were chemical-free. Use of inorganic chemicals started during the late nineteenth century. Non-chemical means to control weed include preventive, cultural, physical, or mechanical measures, exploiting allelopathic means, and bio-measures. While among other approaches, preventive methods and cultural means of controlling weeds, like cover cropping, intercropping, and crop rotation, are usually less frequent but implemented. Similarly, thermal weeding, utilizing the electromagnetic fields and electric systems, is an another tool for conquering weeds. Integrated weed management offers usage of all available tools to effectively minimize weeds in a short- and long-term approach because farming community always preferred to choice an inexpensive, informal, and eco-friendly measure to manage weeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abul-Soud M, El-Ansary DO, Hussein AM (2010) Effects of different cattle manure rates and mulching on weed control and growth and yield of squash. J Appl Sci Res 6:1379–1386

    Google Scholar 

  • Agenbag GA, Villiers OT (1989) The effect of nitrogen fertilizers on the germination and seedling emergence of wild oat (Avena fatua L.) seed in different soil types. Weed Res 29:239–245

    Article  Google Scholar 

  • Altieri MA, Lana MA, Bittencourt HV, Kieling AS, Comin JJ, Lovato PE (2011) Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil. J Sustain Agric 35:855–869

    Article  Google Scholar 

  • Amosse C, Jeuffroy M-H, Celette F, David C (2013) Relay-intercropped forage legumes help to control weeds in organic grain production. Eur J Agron 49:158–167

    Article  Google Scholar 

  • Andrews IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55:239–248

    Article  Google Scholar 

  • Anzalone A, Cirujeda A, Aibar J, Pardo G, Zaragoza C (2010) Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol 24:369–377

    Article  Google Scholar 

  • Ascard J (1995) Effects of flame weeding in weed species at different developmental states. Weed Res 35:397–411

    Article  Google Scholar 

  • Ash GJ (2010) The science, art and business of successful bioherbicides. Biol Control 52:230–240

    Article  Google Scholar 

  • Auld BA, Hertherington SD, Smith HE (2003) Advances in bioherbicide formulation. Weed Biol Manage 3:61–67

    Article  CAS  Google Scholar 

  • Bajwa AA, Mahajan G, Chauhan BS (2015) Nonconventional weed management strategies for modern agriculture. Weed Sci 63:723–747

    Article  Google Scholar 

  • Baker HG (1974) The evolution of weeds. Annu Rev Ecol Syst 5:1–24

    Article  Google Scholar 

  • Barzman M, Barberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messean A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215

    Article  Google Scholar 

  • Baumann DT, Kropff MJ, Bastiaans L (2000) Intercropping leeks to suppress weeds. Weed Res 40:359–374

    Article  Google Scholar 

  • Baumann DT, Bastiaans L, Kropff MJ (2002) Intercropping system optimization for yield, quality and weed suppression combining mechanistic and descriptive models. Agron J 94:734–742

    Article  Google Scholar 

  • Benoit DL, Vincent C, Chouinard G (2006) Management of weeds, apple sawfly (Hoplocampa testudinea Klug) and plum curculio (Conotrachelus nenuphar Herbst) with cellulose sheeting. Crop Prot 25:331–337

    Article  Google Scholar 

  • Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  • Bilalis D, Sidiras N, Economou G, Vakali C (2003) Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J Agron Crop Sci 189:233–241

    Article  Google Scholar 

  • Blackshaw RE, Moyer JR, Doram RC, Boswell AL (2001) Yellow sweet clover, green manure, and its residues effectively suppress weeds during fallow. Weed Sci 49:406–413

    Article  CAS  Google Scholar 

  • Blackshaw RE, Brandt RN, Janzen HH, Entz T (2004a) Weed species response to phosphorus fertilization. Weed Sci 52:406–412

    Article  CAS  Google Scholar 

  • Blackshaw RE, Molnar LJ, Janzen HH (2004b) Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci 52:614–622

    Article  CAS  Google Scholar 

  • Blanco-Moreno JM, Chamorro L, Masalles RM, Recasens J, Sans FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375–387

    Article  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  • Boyette CD, Hoagland RE, Weaver MA (2008) Interaction of a bioherbicide and glyphosate for controlling hemp sesbania in glyphosate-resistant soybean. Weed Biol Manage 8:18–24

    Article  CAS  Google Scholar 

  • Cai X, Gu M (2016) Bioherbicides in organic horticulture. Horticulturae 2:3. https://doi.org/10.3390/horticulturae2020003

    Article  Google Scholar 

  • Camacho A, Mejia D (2015) In: The health consequences of aerial spraying of illicit crops: the case of Colombia. Center for Global Development Working Paper No. 408. Available from SSRN: https://ssrn.Com/abstract¼2623145 or https://doi.org/10.2139/ssrn.2623145. Accessed 09.03.17

  • Chauhan BS (2012) Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol 26:1–13

    Article  Google Scholar 

  • Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi arid region of Punjab. Agric Ecosyst Environ 79:105–112

    Article  Google Scholar 

  • Cheema ZA, Luqman M, Khaliq A (1997) Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J Animal Plant Sci 7:91–93

    Google Scholar 

  • Cheema ZA, Iqbal M, Ahmad R (2002) Response of wheat varieties and some Rabi weeds to allelopathic effects of sorghum water extract. Int J Agric Biol 4:52–55

    Google Scholar 

  • Cheema ZA, Khaliq A, Mubeen M (2003) Response of wheat and winter weeds to foliar application of different plant water extracts of sorghum (Sorghum bicolor). Pak J Weed Sci Res 9:89–97

    Google Scholar 

  • Chikoye D, Ekeleme F, Udensi UE (2001) Cogongrass suppression by intercropping cover crops in corn/cassava systems. Weed Sci 49:658–667

    Article  CAS  Google Scholar 

  • Chung YR, Kim BS, Kim HT, Cho KY (1990) Identification of Exserohilum species, a fungal pathogen causing leaf blight of barnyardgrass (Echinochloa crus-galli). Korean J Plant Patho l6:429–433

    Google Scholar 

  • Chung IM, Kim JT, Kim SH (2006) Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J Agric Food Chem 54:2527–2536

    Article  CAS  PubMed  Google Scholar 

  • Clements DR, Weise SF, Swanton CJ (1994) Integrated weed management and weed species diversity. Phytoprotection 75:1–18

    Article  Google Scholar 

  • Collins M (1999) In: Bishop AC, Boersma M, Barnes CD (eds) Thermal weed control, a technology with a future.12th Australian Weeds Conference-weed management into the 21st Century: Do We Know Where we’re Going. Wrest Point Convention Centre, Hobart, Tasmania

    Google Scholar 

  • Cordeau S, Triolet M, Wayman S, Steinberg C, Guillemin JP (2016) Bioherbicides: dead in the water? A review of the existing products for integrated weed management. Crop Prot 87:44–49

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, von Fragstein P, Pristeri A, Monti M (2011) The competitive ability of pea-barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Res 122:264–272

    Article  Google Scholar 

  • Couvreur M, Verheyen K, Hermy M (2005) Experimental assessment of plant seed retention times in fur of cattle and horse. Flora 200:136–147

    Article  Google Scholar 

  • Crutchfield DA, Wicks GA, Burnside OC (1986) Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci 34:110–114

    Article  CAS  Google Scholar 

  • Cudney DW, Wright SD, Shultz TA, Reints JS (1992) Weed seed in dairy manure depends on collection site. Calif Agric 46:31–32

    Google Scholar 

  • Dastgheib F (1989) Relative importance of crop seed, manure, and irrigation water as sources of weed infestation. Weed Res 29:113–116

    Article  Google Scholar 

  • Dayan FE, Owens DK, Duke SO (2012) Rationale for a natural products approach to herbicide discovery. Pest Manag Sci 68(4):519–528

    Article  CAS  PubMed  Google Scholar 

  • De Gregorio RE, Ashley RA (1986) Screening living mulches/ cover crops for no-till snap beans. Proc Northeast Weed Sci Soc 40:87–91

    Google Scholar 

  • Dmitrovic S, Simonovic A, Mitic N, Savic J, Cingel A, Filipovic B, Ninkovic S (2014) Hairy root exudates of allelopathic weed Chenopodium murale L induce oxidative stress and down-regulate core cell cycle genes in Arabidopsis and wheat seedlings. Plant Growth Regul 75(1):1–18

    Google Scholar 

  • Domingues FD, Starling FL, Nova CC, Loureiro BR, Branco CW (2016) The control of floating macrophytes by grass carp in net cages: experiments in two tropical hydroelectric reservoirs. Aquac Res 48:1–13. https://doi.org/10.1111/are.13163

    Article  Google Scholar 

  • Duke SO, Lydon J (1993) Natural phytotoxins as herbicides, in Pest control with enhanced environmental safety, (ed) by Duke SO, Menn JJ, Plimmer JR ACS Symposium Series 524, American Chemical Society, Washington, DC, pp 111–121

    Google Scholar 

  • Ekeleme F, Akobundu IO, Fadayomi RO, Chikoye D, Abayomi YA (2003) Characterization of legume cover crops for weed suppression in the moist savanna of Nigeria. Weed Technol 17:1–13

    Article  Google Scholar 

  • Eslami SV (2015) Weed management in conservation agricultural systems. In: Mahajan G (ed) Chauhan BS. Springer, Recent Advances in Weed Management, pp 87–124

    Google Scholar 

  • Evans HC (2000) Evaluating plant pathogens for biological control of weeds: an alternative view of pest risk assessment. Australian Plant Pathol 29:1–14

    Article  Google Scholar 

  • Farooq O, Cheema ZA (2013) Impact of planting time and seedbed conditions on little seed canary grass and Lambsquarters dynamics in wheat. Int J Agric Biol 15:1003–1007

    Google Scholar 

  • Farooq O, Cheema ZA (2014) Influence of sowing dates and planting methods on weed dynamics in wheat crop. Pak J Agri Sci 51(4):817–825

    Google Scholar 

  • Farooq M, Jabran K, Rehman H, Hussain M (2008) Allelopathic effects of rice on seedling development in wheat, oat, barley and berseem. Allelopathy J 22:385–390

    Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH (2011a) The role of allelopathy in agricultural pest management. Pest Manag Sci 67(5):493–506

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011b) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011c) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Aparicio M, Emeran AA, Rubiales D (2010) Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Prot 29:867–871

    Article  Google Scholar 

  • Fischer RA, Miles RE (1973) The role of spatial pattern in competition between crop plants and weeds: a theoretical analysis. Math Biosci 18:335–350

    Article  Google Scholar 

  • Fontanelli M, Raffaelli M, Martelloni L, Frasconi C, Ginanni C, Peruzzi A (2013) The influence of non-living mulch, mechanical and thermal treatments on weed population and yield of rainfed fresh-market tomato (Solanum lycopersicum L). Span J Agric Res 11(3):593–602

    Article  Google Scholar 

  • Forcella F (1984) Wheat and ryegrass competition for pulses of mineral nitrogen. Aust J Exp Agric Anim Hus 24:421–425

    Article  Google Scholar 

  • Fujii Y (1999) Allelopathy of hairy vetch and Macuna; their application for sustainable agriculture. In: Chou CH et al (eds) Biodiversity and Allelopathy from organisms to ecosystems in the Pacific. Academia Sinica, Taipei, pp 289–300

    Google Scholar 

  • Gaba S, Gabriel E, ChadÅ“uf J, Bonneu F, Bretagnolle V (2016) Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep 6:30112. https://doi.org/10.1038/srep30112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosheh H (2005) Constraints in implementing biological weed control: a review. Weed Biol Manag 5:83–92. https://doi.org/10.1111/j.1445-6664.2005.00163.x

    Article  Google Scholar 

  • Gibson KD, Fischer AJ (2004) Competitiveness of rice cultivars as a tool for crop-based weed management. Weed Biol Manag 4:517–537

    Article  Google Scholar 

  • Gibson K, Fischer A, Foin T, Hill J (2002) Implications of delayed Echinochloa spp germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351–358

    Article  Google Scholar 

  • Grossman J (1993) Fighting insects with living mulches. IPM Practitioner XV(10):1–8

    Google Scholar 

  • Gwathmey CO, Steckel LE, Larson JA (2008) Solid and skip-row spacings for irrigated and nonirrigated upland cotton. Agron J 100:672–680

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Haramoto ER, Gallandt ER (2004) Brassica cover cropping for weed management: a review. Renew Agric Food Syst 19:187–198

    Article  Google Scholar 

  • Harker KN, O’Donovan JT (2013) Recent weed control, weed management, and integrated weed management. Weed Technol 27:1–11

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hasan MN, Sarker UK, Uddin MR, Hasan AK, Kaysar MS (2017) Comparison of weed control methods on infestation and crop productivity in transplant aman rice. Progress Agric 27:418–427. https://doi.org/10.3329/pa.v27i4.32121

    Article  Google Scholar 

  • Hasanuzzaman M, Islam MO, Bapari MS (2008) Efficacy of different herbicides over manual weeding in controlling weeds in transplanted rice. Aus J Crop Sci 2:18–24

    CAS  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2002) Herbicides: feminization of male frogs in the wild. Nature 419:895–896

    Article  CAS  PubMed  Google Scholar 

  • Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70(9):1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Heisel T, Schou J, Andreasen C, Christensen S (2002) Using laser to measure stem thickness and cut weed stems. Weed Res 42:242–248

    Article  Google Scholar 

  • Hoagland RE, Boyette CD, Weaver MA, Abbas HK (2007) Bioherbicides: research and risks. Toxin Rev 26:313–342

    Article  CAS  Google Scholar 

  • Huang S, Watson A, Duan G, Yu L (2012) Preliminary evaluation of potential pathogenic fungi as bioherbicides of barnyardgrass (Echinochloa crus-galli) in China. Int Rice Res Notes 26:36–37

    Google Scholar 

  • Hussain M, Khan MB, Mehmood Z, Zia AB, Jabran K, Farooq M (2013) Optimizing row spacing in wheat cultivars differing in tillering and stature for higher productivity. Arch Agron Soil Sci 59:1457–1470

    Article  Google Scholar 

  • Hussain M, Farooq S, Jabran CMK (2018) Mechanical weed control. In: Jabran K, Chauhan BS (eds) Non-chemical weed control. Academic Press, London, pp 133–155. www.elseveir.com

    Chapter  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:4–12

    Article  Google Scholar 

  • Inman RE (1971) A preliminary evaluation of rumex rust as a biological control agent for curly dock. Phytopathology 61(1):102–107

    Article  Google Scholar 

  • Itulya FM, Aguyoh JN (1998) The effects of intercropping kale with beans on yield and suppression of redroot pigweed under high altitude conditions in Kenya. Exp Agric 34:171–176

    Article  Google Scholar 

  • Jabran K (2017) Manipulation of Allelopathic crops for weed control. Springer International AG, Cham

    Book  Google Scholar 

  • Jabran K, Chauhan BS (2015) Weed management in aerobic rice systems. Crop Prot 78:151–163

    Article  CAS  Google Scholar 

  • Jabran K, Farooq M, Hussain M, Rehman H, Ali MA (2010) Wild oat (Avena fatua L) and canary grass (Phalaris minor Ritz) management through allelopathy. J Plant Prot Res 50:32–35

    Article  Google Scholar 

  • Jabran K, Mahajan G, Surindar, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. https://doi.org/10.1016/j.cropro.2015.03.004

    Article  Google Scholar 

  • Jabran K, Hussain M, Chauhan BS (2017) Integrated weed management in maize cultivation: an overview. In: Watson D (ed) Achieving sustainable cultivation of maize. Burleigh Dodds Science Publishing Ltd, Cambridge. (In press)

    Google Scholar 

  • Jamil M, Cheema ZA, Mushtaq MN, Farooq M, Cheema MA (2009) Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agron Sustain Dev 29:475–482

    Article  Google Scholar 

  • Jaya Suria ASM, Juraimi AS, Rahman M, Man AB, Selamat A (2011) Efficacy and economics of different herbicides in aerobic rice system. Afr J Biotechnol 10:8007–8022

    Article  CAS  Google Scholar 

  • Jayakumar M, Ponnuswamy K, Amanullah MM (2008) Effect of sources of nitrogen and intercropping on weed control, growth and yield of cotton. Res J Agric Biol Sci 4:154–158

    Google Scholar 

  • Jones LA, Mandrak NE, Cudmore B (2017) Updated (2003–2015) biological synopsis of grass carp (Ctenopharyngodon idella). DFO Can Sci Advis Sec Res Doc 2016/102. Iv + 63 p

    Google Scholar 

  • Jumarie C, Aras P, Boily M (2017) Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere 168:163–170

    Article  CAS  PubMed  Google Scholar 

  • Jurgensen V, Mùller E (2000) Intercropping of different secondary crops in maize. Soil Plant Sci 50:82–88

    Google Scholar 

  • Kandhro MN, Tunio S, Rajpar I, Chachar Q (2014) Allelopathic impact of sorghum and sunflower intercropping on weed management and yield enhancement in cotton. Sarhad J Agric Sci 30:311–318

    Google Scholar 

  • Khaliq A, Matloob A, Ahmad N, Rasul F, Awan U (2012) Post emergence chemical weed control in direct seeded fine rice. J Ani Plant Sci 22:1101–1106

    CAS  Google Scholar 

  • Khan MB, Ahmad M, Hussain M, Jabran K, Farooq S, Waqas-Ul-Haq M (2012) Allelopathic plant water extracts tank mixed with reduced doses of atrazine efficiently control Trianthema Portulacastrum L in Zea Mays L. J Anim Plant Sci 22:339–346

    CAS  Google Scholar 

  • Kobayashi Y, Ito M, Suwanarak K (2003) Evaluation of smothering effect of four legume covers on Pennisetum polystachion ssp. Setosum (Swartz) Brunken. Weed Biol Manag 3:222–227

    Article  Google Scholar 

  • Korres NE (2005) Encyclopaedic dictionary of weed science: theory and digest. Lavoisier SAS; Intercept Ltd., France, p 695

    Google Scholar 

  • Korres NE (2018) Agronomic weed control: a trustworthy approach for sustainable weed management. In Non-chemical weed control, 1st (ed) Jabran K, Chauhan BS (Eds) Sciencedirect, Academic Press, USA, pp 103–105

    Chapter  Google Scholar 

  • Korres NE, Froud-Williams RJ (2004) The interrelationships of winter wheat cultivars, crop density and competition of naturally occurring weed flora. Biol Agric Hortic 22:1–20

    Article  Google Scholar 

  • Korres NE, Norsworthy JK (2015) Influence of a rye cover crop on the critical period for weed control in cotton. Weed Sci 631:346–352

    Article  Google Scholar 

  • Lamberth C (2016) Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids 48(4):929–940

    Article  CAS  PubMed  Google Scholar 

  • Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. Hort Technol 15(3):477–481

    Article  Google Scholar 

  • Larney FJ, Blackshaw RE (2003) Weed seed viability in composted beef cattle feedlot manure. J Environ Qual 32:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Lebov JF, Engel LS, Richardson D, Hogan SL, Sandler DP, Hoppin JA (2015) Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the agricultural health study. Environ Res 143:198–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemerle D, Gill GS, Murphy CE, Walker SR, Cousens RD, Mokhtari S, Peltzer SJ, Coleman R, Luckett DJ (2001) Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Crop Pasture Sci 52:527–548

    Article  Google Scholar 

  • Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47

    Article  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • Ligneau LAM, Watt TA (1995) The effects of domestic compost upon the germination and emergence of barley and six arable weeds. Ann Appl Biol 126:153–162

    Article  Google Scholar 

  • Lorenzi H (2000) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Lu YC, Watkins KB, Teasdale JR, Abdul-Baki AA (2000) Cover crops in sustainable food production. Food Rev Intl 16:121–157

    Article  Google Scholar 

  • Macías FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy – a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  PubMed  CAS  Google Scholar 

  • Makoi JH, Ndakidemi PA (2012) Allelopathy as protectant, defence and growth stimulants in legume cereal mixed culture systems. NZ J Crop Hortic Sci 40:161–186

    Article  Google Scholar 

  • Mathiassen SK, Bak T, Christensen S, Kudsk P (2006) The effect of laser treatment as a weed control method. Biosyst Eng 95:497–505

    Article  Google Scholar 

  • Merfield CN (2013) The final frontier: non-chemical, intrarow, weed control for annual crops with a focus on mini-ridgers. The BHU Future Farming Centre: 18, Lincoln

    Google Scholar 

  • Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis D (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. Hort Sci 47(9):1270–1277

    Article  Google Scholar 

  • Mirsky SB, Ryan MR, Teasdale JR, Curran WS, Reberg-Horton CS, Spargo JT, Wells MS, Keene CL, Moyer JW (2013) Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the eastern United States. Weed Technol 27:193–203

    Article  Google Scholar 

  • Mohler CL (2001) Enhancing the competitive ability of crops. In: Liebman M, Mohler CL, Staver CP (eds) Ecological management of agricultural weeds. Cambridge University Press, Cambridge, pp 269–321

    Chapter  Google Scholar 

  • Moreno MM, Moreno A (2008) Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hortic 116(3):256–263

    Article  CAS  Google Scholar 

  • Moss SR (2010) Non-chemical methods of weed control: benefits and limitations. Seventeenth Australasian Weeds Conference, September 26, pp 14–19

    Google Scholar 

  • Mukherjee A, Kundu M, Sarkar S (2010) Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L). Agr Water Manag 98:182–189

    Article  Google Scholar 

  • Myers JH, Cory JS (2017) Biological control agents: invasive species or valuable solutions? In: Impact of biological invasions on ecosystem services. Springer, Cham, pp 191–202

    Chapter  Google Scholar 

  • Narwal SS (2000) Weed management in rice:wheat rotation by allelopathy. Crit Rev Plant Sci 19:249–266

    Article  Google Scholar 

  • Ng SC, Kadir J, Hailmi MS, Rahim AA (2011) Efficacy of Exserohilum longirostratum on barnyard grass (Echinochloa crus-galli spp. crusgalli) under field conditions. Biocontrol Sci Tech 21:449–460

    Article  Google Scholar 

  • Norris RF, Caswell-Chen EP, Kogan M (2003) Concepts in integrated pest management. Prentice Hall, Upper Saddle River, 586 pp

    Google Scholar 

  • Oehrens E (1977) Biological control of blackberry through the introduction of the rust, Phragmidium violaceum. FAO Plant Protect Bullet, Chile 25:26–28

    Google Scholar 

  • Olsen J, Kristensen L, Weiner J, Griepentrog HW (2005) Increasing density and spatial uniformity increase weed suppression by spring wheat. Weed Res 45:316–321

    Article  Google Scholar 

  • Paolini R, Principi M, Del Puglia S, Lazzeri L (1998) Competitive effects between sunflower and six broad-leaved weeds. In Proceedings of 6th EWRS Mediterranean Symposium, Montpellier, France, pp 81–88

    Google Scholar 

  • Paolini R, Principi M, Froud-Williams RJ, Del Puglia S, Biancardi E (1999) Competition between sugarbeet and Sinapis arvensis and Chenopodium album, as affected by timing of nitrogen fertilization. Weed Res 39:425–440

    Article  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res 72:181–192

    Article  Google Scholar 

  • Pickering J (2003) Laying it on thick. The Garden 128:266–269

    Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human Well-being. Nature 540:220–229

    Article  CAS  PubMed  Google Scholar 

  • Rana SS, Rana MC (2016) Principles and practices of weed management. Department of Agronomy. College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, p. 138

    Google Scholar 

  • Rizzardi MA, Vargas L, Roman ES, Kissmann KG (2004) Aspectos gerais do manejo e controle de plantas daninhas. In: Vargas L, Roman ES (eds) Manual de manejo e controle de plantas daninhas. Embrapa Uva e Vinho, Bento Gonçalves, pp 105–144

    Google Scholar 

  • Rohr JR, Palmer BD (2005) Aquatic herbicide exposure increases salamander desiccation risk eight months later in a terrestrial environment. Environ Toxicol Chem 24(5):1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Sardana V, Mahajan G, Jabran K, Chauhan BS (2017) Role of competition in managing weeds: an introduction to the special issue. Crop Prot 95:1–7

    Article  Google Scholar 

  • Sarkar S, Paramanick M, Goswami SB (2007) Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Till Res 93:94–101

    Article  Google Scholar 

  • Saudy HS (2015) Maize-cowpea intercropping as an ecological approach for nitrogen use rationalization and weed suppression. Arch Agron Soil Sci 61:1–14

    Article  CAS  Google Scholar 

  • Sauerborn JH, Sprich H, Mercer-Quarshie H (2000) Crop rotation to improve agricultural production in sub-Saharan Africa. J Agron Crop Sci 184:67–72

    Article  Google Scholar 

  • Shahzad M, Farooq M, Jabran K, Hussain M (2016) Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Prot 89:161–169

    Article  Google Scholar 

  • Shaner DL, Beckie HJ (2014) The future for weed control and technology. Pest Manag Sci 70:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Shields EJ, Dauer JT, VanGessel MJ, Neumann G (2006) Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci 55:185–185

    Google Scholar 

  • Simko I, Hayes RJ, Mou B, McCreight JD (2014) Lettuce and spinach. In: Smith S, Diers B, Specht J, Carver B (eds) Yield gains in major U.S. field crops. In: 33, CSSA Special Publication, ASA, CSSA, and SSSA, Madison, WI, pp. 53–85

    Google Scholar 

  • Sivesind EC, Leblanc ML, Cloutier DC, Seguin P, Stewart KA (2009) Weed response to flame weeding at different developmental stages. Weed Technol 23:438–443

    Article  Google Scholar 

  • Steiner KG (1984) Intercropping in tropical small holder agriculture with special reference to South Africa. Geselleschaft fur Technische Zusammenarbeit (GTZ), Eschborn

    Google Scholar 

  • Sterling TD, Arundel AV (1986) Health effects of phenoxy herbicides: a review. Scand J Work Environ Health 12:161–173

    Article  CAS  PubMed  Google Scholar 

  • Teasdale JR (1993) Interaction of light, soil moisture, and temperature with weed suppression by hairy vetch residue. Weed Sci 41:46–51

    Article  Google Scholar 

  • Teasdale JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9:475–479

    Article  Google Scholar 

  • Teasdale JR, Mohler CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385–392

    Article  CAS  Google Scholar 

  • Tesio F, Ferrero A (2010) Allelopathy, a chance for sustainable weed management. Int J Sustain Dev World Ecol 17:377–389

    Article  Google Scholar 

  • Timmons FL (2005) A history of weed control in the United States and Canada. Weed Sci 53:748–761

    Article  CAS  Google Scholar 

  • Upadhyaya MK, Blackshaw RE (2007a) Non-chemical Weed Management: principles, concepts and technology. CABI publishing; CABI, pp. 3

    Google Scholar 

  • Upadhyaya MK, Blackshaw RE (Eds) (2007b) Non-chemical Weed Management; Principles, Concepts and Technology. CABI International. Biddles Ltd, King’s Lynn, pp 135–153

    Google Scholar 

  • Van Lenteren JC (2012) IOBC internet book of biological control, version 6. International Organization for Biological Control, Wageningen, p 182

    Google Scholar 

  • Van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52(3):531–540

    Article  Google Scholar 

  • Vandermeer J (1992) Weeds and intercrops. In: Vandermeer J (ed) The ecology of intercropping, 2. Cambridge University Press, London, pp 127–140

    Google Scholar 

  • Vidotto F, Fogliatto S, Milan M, Ferrero A (2016) Weed communities in Italian maize fields as affected by pedo-climatic traits and sowing time. Eur J Agron 74:38–46

    Article  Google Scholar 

  • Ward MH, Lubin J, Giglierano J, Colt JS, Wolter C, Bekiroglu N, Camann D, Hartge P, Nuckols JR (2006) Proximity to crops and residential exposure to agricultural herbicides in Iowa. Environ Health Perspect 114:893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westra EP (2010) Can Allelopathy be incorporated into agriculture for weed suppression? http://www.colostate.edu/Depts/Entomology/courses/en570/papers_2010/westra.pdf

  • Weyl PSR, Martin GD (2016) Have grass carp driven declines in macrophyte occurrence and diversity in the Vaal River, South Africa? Afr J Aquat Sci 41(2):241–245

    Article  CAS  Google Scholar 

  • Williams RD (1989) Perennial turf grasses as living mulches in Oregon’s horticultural crops. Proc Western Soc Weed Sci 42:253–260

    Google Scholar 

  • Williams MM II, Boydston RA (2013) Crop seeding level: implications for weed management in sweet corn. Weed Sci 61:437–442

    Article  CAS  Google Scholar 

  • Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJ, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown

    Google Scholar 

  • WSSA (2017) WSSA position statement on biological control of weeds. http://wssa.Net/wssa/weed/biologicalcontrol/. Accessed 14 Mar 17

  • Zhang WM, Moody K, Watson AK (1996) Responses of Echinochloa species and rice (Oryza sativa) to indigenous pathogenic fungi. Plant Dis 80:1053–1058

    Article  Google Scholar 

Download references

Acknowledgments

Corresponding authors are highly thankful to Dr. Khawar Jabran, Assistant Professor, Department of Plant Protection, Duzce University, Turkey, who helped us in literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Farooq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooq, O., Mubeen, K., Ali, H.H., Ahmad, S. (2019). Non-chemical Weed Management for Field Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_16

Download citation

Publish with us

Policies and ethics