Skip to main content

Recent Advances in Bioinspired Asymmetric Epoxidations with Hydrogen Peroxide

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Bioinspired asymmetric epoxidation of olefins with green oxidant hydrogen peroxide attracted much research interest in recent years. A variety of catalyst systems based on transition metal complexes has emerged, providing useful techniques to obtain chiral epoxides from different classes of olefins. In this chapter, we discuss the major advances in the field, with focus on ligands design, catalyst activity, enantioselectivity, and substrate scope of asymmetric epoxidations, as well as some mechanistic aspects of these reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGarrigle EM, Gilheany DG (2005) Chromium− and Manganese−salen promoted epoxidation of alkenes. Chem Rev 105:1563–1602. https://doi.org/10.1021/cr0306945

    Article  CAS  PubMed  Google Scholar 

  2. Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev 105:1603–1662. https://doi.org/10.1021/cr0406458

    Article  CAS  PubMed  Google Scholar 

  3. Adam W, Zhang A (2005) Chiral-auxiliary-controlled diastereoselective epoxidations. Synlett 2005:1047–1072. https://doi.org/10.1055/s-2005-865214

    Article  CAS  Google Scholar 

  4. Wong OA, Shi Y (2008) Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. ChemRev 108:3958–3987. https://doi.org/10.1021/cr068367v

    Article  CAS  Google Scholar 

  5. Weinstock LM, Mulvey DM, Tull RJ (1976) Synthesis of the β-adrenergic blocking agent timolol from optically active precursors. Org Chem 41:3121–3124. https://doi.org/10.1021/jo00881a011

    Article  CAS  Google Scholar 

  6. Sundermeier U, Döbler C, Beller M (2004) Recent developments in the osmium-catalyzed dihydroxylation of olefins. In: Bäckvall JE (ed) Modern oxidation methods. Wiley, New York, p 1. https://doi.org/10.1002/3527603689.ch1

    Google Scholar 

  7. Bevinakatti H, Banerji AJ (1991) Practical chemoenzymic synthesis of both enantiomers of propranolol. J Org Chem 56:5372–5375. https://doi.org/10.1021/jo00018a032

    Article  CAS  Google Scholar 

  8. Michaelson RC, Palermo RE, Sharpless KB (1977) Chiral hydroxamic acids as ligands in the vanadium catalyzed asymmetric epoxidation of allylic alcohols by tert-butyl hydroperoxide. J Am Chem Soc 99:1990–1992. https://doi.org/10.1021/ja00448a059

    Article  CAS  Google Scholar 

  9. Yamada S, Mashiko T, Terashima S (1977) (Acetylacetonato)[(-)-N-alkylephedrinato]dioxomolybdenum, a new class of chiral chelate complexes which catalyze asymmetric epoxidation of allylic alcohol. J Am Chem Soc 99:1988–1990. https://doi.org/10.1021/ja00448a058

    Article  CAS  Google Scholar 

  10. Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976. https://doi.org/10.1021/ja00538a077

    Article  CAS  Google Scholar 

  11. Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc 112:2801–2803. https://doi.org/10.1021/ja00163a052

    Article  CAS  Google Scholar 

  12. Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett 31:7345–7348. https://doi.org/10.1016/S0040-4039(00)88562-7

    Article  CAS  Google Scholar 

  13. Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340. https://doi.org/10.1038/nature07371

    Article  CAS  PubMed  Google Scholar 

  14. Meunier B (ed) (2000) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London

    Google Scholar 

  15. De Faveri G, Ilyashenko G, Watkinson M (2011) Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem Soc Rev 40:1722–1760. https://doi.org/10.1039/c0cs00077a

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Yamamoto H (2015) Asymmetric epoxidation using hydrogen peroxide as oxidant. Chem Asian J 10:2056–2068. https://doi.org/10.1002/asia.201500293

    Article  CAS  PubMed  Google Scholar 

  17. Bryliakov KP (2017) Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem Rev 117:11406–11459. https://doi.org/10.1021/acs.chemrev.7b00167

    Article  CAS  PubMed  Google Scholar 

  18. Wu M, Wang B, Wang S, Xia C, Sun W (2009) Asymmetric epoxidation of olefins with chiral bioinspired manganese complexes. Org Lett 11:3622–3625. https://doi.org/10.1021/ol901400m

    Article  CAS  PubMed  Google Scholar 

  19. Murphy A, Dubois G, Stack TDP (2003) Efficient epoxidation of electron-deficient olefins with a cationic manganese complex. J Am Chem Soc 125:5250–5251. https://doi.org/10.1021/ja029962r

    Article  CAS  PubMed  Google Scholar 

  20. Maity NC, Bera PK, Ghosh D, Abdi SHR, Kureshy RI, Khan NH, Bajaj HC, Suresh E (2014) Manganese complexes with non-porphyrin N4 ligands as recyclable catalyst for the asymmetric epoxidation of olefins. Catal Sci Technol 4:208–217. https://doi.org/10.1039/c3cy00528c

    Article  CAS  Google Scholar 

  21. Miao C, Wang B, Wang Y, Xia C, Lee YM, Nam W, Sun W (2016) Proton-promoted and anion-enhanced epoxidation of olefins by hydrogen peroxide in the presence of nonheme manganese catalysts. J Am Chem Soc 138:936–943. https://doi.org/10.1021/jacs.5b11579

    Article  CAS  PubMed  Google Scholar 

  22. Miao C, Yan X, Xu D, Xia C, Sun W (2017) Bioinspired manganese complexes and graphene oxide synergistically catalyzed asymmetric epoxidation of olefins with aqueous hydrogen peroxide. Adv Synth Catal 359:476–484. https://doi.org/10.1002/adsc.201600848

    Article  CAS  Google Scholar 

  23. Ottenbacher RV, Bryliakov KP, Talsi EP (2011) Non-heme manganese complexes catalyzed asymmetric epoxidation of olefins by peracetic acid and hydrogen peroxide. Adv Synth Catal 353:885–889. https://doi.org/10.1002/adsc.201100030

    Article  CAS  Google Scholar 

  24. Garcia-Bosch I, Ribas X, Costas M (2009) A broad substrate-scope method for fast, efficient and selective hydrogen peroxide-epoxidation. Adv Synth Catal 351:348–352. https://doi.org/10.1002/adsc.200800650

    Article  CAS  Google Scholar 

  25. Garcia-Bosch I, Gómez L, Polo A, Ribas X, Costas M (2012) Stereoselective epoxidation of alkenes with hydrogen peroxide using a bipyrrolidine-based family of manganese complexes. Adv Synth Catal 354:65–70. https://doi.org/10.1002/adsc.201100409

    Article  CAS  Google Scholar 

  26. Wang B, Miao C, Wang S, Xia C, Sun W (2012) Manganese catalysts with C1-symmetric N4 ligand for enantioselective epoxidation of olefins. Chem Eur J 18:6750–6753. https://doi.org/10.1002/chem.201103802

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Miao C, Wang S, Xia C, Sun W (2013) Bioinspired manganese and iron complexes with tetradentate N ligands for the asymmetric epoxidation of olefins. ChemCatChem 5:2489–2494. https://doi.org/10.1002/cctc.201300102

    Article  CAS  Google Scholar 

  28. Shen D, Miao C, Wang S, Xia C, Sun W (2014) A mononuclear manganese complex of a tetradentate nitrogen ligand—synthesis, characterizations, and application in the asymmetric epoxidation of olefins. Eur J Inorg Chem 2014:5777–5782. https://doi.org/10.1002/ejic.201402663

    Article  CAS  Google Scholar 

  29. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2012) Asymmetric epoxidations with H2O2 on Fe and Mn aminopyridine catalysts: probing the nature of active species by combined electron paramagnetic resonance and enantioselectivity study. ACS Catal 2:1196–1202. https://doi.org/10.1021/cs300205n

    Article  CAS  Google Scholar 

  30. Cussó O, Garcia-Bosch I, Font D, Ribas X, Lloret-Fillol J, Costas M (2013) Highly stereoselective epoxidation with H2O2 catalyzed by electron-rich aminopyridine manganese catalysts. Org Lett 15:6158–6161. https://doi.org/10.1021/ol403018x

    Article  PubMed  Google Scholar 

  31. Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP (2014) Highly enantioselective bioinspired epoxidation of electron—deficient olefins with H2O2 on aminopyridine Mn catalysts. ACS Catal 4:1599–1606. https://doi.org/10.1021/cs500333c

    Article  CAS  Google Scholar 

  32. Ottenbacher RV, Talsi EP, Bryliakov KP (2018) Chiral manganese aminopyridine complexes: the versatile catalysts of chemo- and stereoselective oxidations with H2O2. Chem Rec 18:78–90. https://doi.org/10.1002/tcr.201700032

    Article  CAS  PubMed  Google Scholar 

  33. Shen D, Qiu B, Xu D, Miao C, Xia C, Sun W (2016) Enantioselective epoxidation of olefins with H2O2 catalyzed by bioinspired aminopyridine manganese complexes. Org Lett 18:372–375. https://doi.org/10.1021/acs.orglett.5b03309

    Article  CAS  PubMed  Google Scholar 

  34. Dai W, Li J, Li G, Yang H, Wang L, Gao S (2013) Asymmetric epoxidation of alkenes catalyzed by a porphyrin-inspired manganese complex. Org Lett 15:4138–4141. https://doi.org/10.1021/ol401812h

    Article  CAS  PubMed  Google Scholar 

  35. Dai W, Shang S, Chen B, Li G, Wang L, Ren L, Gao S (2014) Asymmetric epoxidation of olefins with hydrogen peroxide by an in situ-formed manganese complex. J Org Chem 79:6688–6694. https://doi.org/10.1021/jo501178k

    Article  CAS  PubMed  Google Scholar 

  36. Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP (2016) Enantioselective epoxidations of olefins with various oxidants on bioinspired Mn complexes: evidence for different mechanisms and chiral additive amplification. ACS Catal 6:979–988. https://doi.org/10.1021/acscatal.5b02299

    Article  CAS  Google Scholar 

  37. Chen X, Gao B, Su Y, Huang H (2017) Enantioselective epoxidation of electron-deficient alkenes catalyzed by manganese complexes with chiral N4 ligands derived from rigid chiral diamines. Adv Synth Catal 359:2535–2541. https://doi.org/10.1002/adsc.201700541

    Article  CAS  Google Scholar 

  38. Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP (2013) Active species of nonheme iron and manganese-catalyzed oxidations. Top Catal 56:939–949. https://doi.org/10.1007/s11244-013-0058-6

    Article  CAS  Google Scholar 

  39. Ottenbacher RV, Talsi EP, Bryliakov KP (2016) Bioinspired Mn-aminopyridine catalyzed epoxidations of olefins with various oxidants: enantioselectivity and mechanism. Catal Today 278:30–39. https://doi.org/10.1016/j.cattod.2016.04.033

    Article  CAS  Google Scholar 

  40. Du J, Miao C, Xia C, Lee YM, Nam W, Sun W (2018) Mechanistic insights into the enantioselective epoxidation of olefins by bioinspired manganese complexes: role of carboxylic acid and nature of active oxidant. ACS Catal 8:4528–4538. https://doi.org/10.1021/acscatal.8b00874

    Article  CAS  Google Scholar 

  41. Maity NC, Abdi SHR, Kureshy RI, Khan NH, Suresh E, Dangi GP, Bajaj HC (2011) Chiral macrocyclic salen Mn(III) complexes catalyzed enantioselective epoxidation of non-functionalized alkenes using NaOCl and urea H2O2 as oxidants. J Catal 277:123–127. https://doi.org/10.1016/j.jcat.2010.10.002

    Article  CAS  Google Scholar 

  42. Maity NC, Rao GVS, Prathap KJ, Abdi SHR, Kureshy RI, Khan NH, Bajaj HC (2013) Organic carbonates as solvents in macrocyclic Mn(III) salen catalyzed asymmetric epoxidation of non-functionalized olefins. J Mol Catal A Chem 366:380–389. https://doi.org/10.1016/j.molcata.2012.10.021

    Article  CAS  Google Scholar 

  43. Maity NC, Bera PK, Saravanan S, Abdi SHR, Kureshy RI, Khan NH, Bajaj HC (2014) Diethyl tartrate linked chiral macrocyclic manganese(III)−salen complex for enantioselective epoxidation of olefins and oxidative kinetic resolution of racemic secondary alcohols. ChemPlusChem 79:1426–1433. https://doi.org/10.1002/cplu.201402131

    Article  CAS  Google Scholar 

  44. Ballistreri FP, Gangemi CMA, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetto GT (2016) (Salen)Mn(III) catalyzed asymmetric epoxidation reactions by hydrogen peroxide in water: a green protocol. Int J Mol Sci 17:1112. https://doi.org/10.3390/ijms17071112

    Article  CAS  PubMed Central  Google Scholar 

  45. Amiri N, Le Maux P, Srour H, Nasri H, Simonneaux G (2014) Nitration of Halterman porphyrin: a new route for fine tuning chiral iron and manganese porphyrins with application in epoxidation and hydroxylation reactions using hydrogen peroxide as oxidant. Tetrahedron 70:8836–8842. https://doi.org/10.1016/j.tet.2014.10.001

    Article  CAS  Google Scholar 

  46. Matsumoto K, Sawada Y, Saito B, Sakai K, Katsuki T (2005) Construction of pseudo-heterochiral and homochiral Di-μ-oxotitanium (Schiff base) dimers and enantioselective epoxidation using aqueous hydrogen peroxide. Angew Chem Int Ed 44:4935–4939. https://doi.org/10.1002/anie.200501318

    Article  CAS  Google Scholar 

  47. Matsumoto K, Kubo T, Katsuki T (2009) Highly enantioselective epoxidation of cis-alkenylsilanes. Chem Eur J 15:6573–6575. https://doi.org/10.1002/chem.200901048

    Article  CAS  PubMed  Google Scholar 

  48. Sawada Y, Matsumoto K, Katsuki T (2007) Titanium-catalyzed asymmetric epoxidation of non-activated olefins with hydrogen peroxide. Angew Chem Int Ed 46:4559–4561. https://doi.org/10.1002/anie.200700949

    Article  CAS  Google Scholar 

  49. Berkessel A, Brandenburg M, Leitterstorf E, Frey J, Lex J, Schäfer M (2007) A practical and versatile access to dihydrosalen (salalen) ligands: highly enantioselective titanium in situ catalysts for asymmetric epoxidation with aqueous hydrogen peroxide. Adv Synth Catal 349:2385–2391. https://doi.org/10.1002/adsc.200700221

    Article  CAS  Google Scholar 

  50. Berkessel A, Brandenburg M, Schäfer M (2008) Mass-spectrometric and kinetic studies on the mechanism and degradation pathways of titanium salalen catalysts for asymmetric epoxidation with aqueous hydrogen peroxide. Adv Synth Catal 350:1287–1294. https://doi.org/10.1002/adsc.200700601

    Article  CAS  Google Scholar 

  51. Sawada Y, Matsumoto K, Kondo S, Watanabe H, Ozawa T, Suzuki K, Saito B, Katsuki T (2006) Titanium-salan-catalyzed asymmetric epoxidation with aqueous hydrogen peroxide as the oxidant. Angew Chem Int Ed 45:3478–3480. https://doi.org/10.1002/anie.200600636

    Article  CAS  Google Scholar 

  52. Matsumoto K, Sawada Y, Katsuki T (2006) Catalytic enantioselective epoxidation of unfunctionalized olefins: utility of a Ti(Oi-Pr)4-salan-H2O2 system. Synlett 2006:3545–3547. https://doi.org/10.1055/s-2006-956496

    Article  CAS  Google Scholar 

  53. Shimada Y, Kondo S, Ohara Y, Matsumoto K, Katsuki T (2007) Titanium-catalyzed asymmetric epoxidation of olefins with aqueous hydrogen peroxide: remarkable effect of phosphate buffer on epoxide yield. Synlett 2007:2445–2447. https://doi.org/10.1055/s-2007-985605

    Article  CAS  Google Scholar 

  54. Kondo S, Saruhashi K, Seki K, Matsubara K, Miyaji K, Kubo T, Matsumoto K, Katsuki T (2008) A μ-Oxo-μ-η22-peroxo titanium complex as a reservoir of active species in asymmetric epoxidation using hydrogen peroxide. Angew Chem Int Ed 47:10195–10198. https://doi.org/10.1002/anie.200804685

    Article  CAS  Google Scholar 

  55. Matsumoto K, Feng C, Handa S, Oguma T, Katsuki T (2011) Asymmetric epoxidation of (Z)-enol esters catalyzed by titanium-(salalen) complex with aqueous hydrogen peroxide. Tetrahedron 67:6474–6478. https://doi.org/10.1016/j.tet.2011.06.022

    Article  CAS  Google Scholar 

  56. Jat JL, De SR, Kumar G, Adebesin AM, Gandham SK, Falck JR (2015) Regio- and enantioselective catalytic monoepoxidation of conjugated dienes: synthesis of chiral allylic cis-epoxides. Org Lett 17:1058–1061. https://doi.org/10.1021/acs.orglett.5b00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsumoto K, Oguma T, Katsuki T (2009) Highly enantioselective epoxidation of styrenes catalyzed by proline-derived C1-symmetric titanium(salan) complexes. Angew Chem Int Ed 48:7432–7435. https://doi.org/10.1002/anie.200903567

    Article  CAS  Google Scholar 

  58. Xiong D, Wu M, Wang S, Li F, Xia C, Sun W (2010) Synthesis of salan (salalen) ligands derived from binaphthol for titanium-catalyzed asymmetric epoxidation of olefins with aqueous H2O2. Tetrahedron Asymmetry 21:374−378. https://doi.org/10.1016/j.tetasy.2010.01.023

    Article  CAS  Google Scholar 

  59. Xiong D, Hu X, Wang S, Miao CX, Xia C, Sun W (2011) Biaryl-bridged salalen ligands and their application in titanium-catalyzed asymmetric epoxidation of olefins with aqueous H2O2. Eur J Org Chem 2011:4289–4292. https://doi.org/10.1002/ejoc.201100512

    Article  CAS  Google Scholar 

  60. Berkessel A, Günther T, Wang Q, Neudörfl JM (2013) Titanium salalen catalysts based on cis-1,2-diaminocyclohexane: enantioselective epoxidation of terminal non-conjugated olefins with H2O2. Angew Chem Int Ed 52:8467–8471. https://doi.org/10.1002/anie.201210198

    Article  CAS  Google Scholar 

  61. Wang Q, Neudörfl JM, Berkessel A (2015) Titanium cis-1,2-diaminocyclohexane (cis-DACH) salalen catalysts for the asymmetric epoxidation of terminal non-conjugated olefins with hydrogen peroxide. Chem Eur J 21:247–254. https://doi.org/10.1002/chem.201404639

    Article  CAS  PubMed  Google Scholar 

  62. Lansing M, Engler H, Leuther TM, Neudörfl JM, Berkessel A (2016) Titanium cis-1,2-diaminocyclohexane (cis-DACH) salalen catalysts of outstanding activity and enantioselectivity for the asymmetric epoxidation of non-conjugated terminal olefins with H2O2. ChemCatChem 8:3706–3709. https://doi.org/10.1002/cctc.201601154

    Article  CAS  Google Scholar 

  63. Talsi EP, Samsonenko DG, Bryliakov KP (2014) Titanium salan catalysts for the asymmetric epoxidation of alkenes: steric and electronic factors governing the activity and enantioselectivity. Chem Eur J 20:14329–14335. https://doi.org/10.1002/chem.201404157

    Article  CAS  PubMed  Google Scholar 

  64. Talsi EP, Bryliakova AA, Bryliakov KP (2016) Titanium salan/salalen complexes: the twofaced janus of asymmetric oxidation catalysis. Chem Rec 16:924–939. https://doi.org/10.1002/tcr.201500273

    Article  CAS  PubMed  Google Scholar 

  65. Talsi EP, Rybalova TV, Bryliakov KP (2016) Ti-salalen mediated asymmetric epoxidation of olefins with H2O2: effect of ligand on the catalytic performance, and insight into the oxidation mechanism. J Mol Catal A: Chem 421:131–137. https://doi.org/10.1016/j.molcata.2016.05.019

    Article  CAS  Google Scholar 

  66. Egami H, Oguma T, Katsuki T (2010) Oxidation catalysis of Nb(salan) complexes: asymmetric epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant. J Am Chem Soc 132:5886–5895. https://doi.org/10.1021/ja100795k

    Article  CAS  PubMed  Google Scholar 

  67. Prasetyanto EA, Khan NH, Seo HU, Park SE (2010) Asymmetric epoxidation of α, β-unsaturated ketones over heterogenized chiral proline diamide complex catalyst in the solvent-free condition. Top Catal 53:1381–1386. https://doi.org/10.1007/s11244-010-9597-2

    Article  CAS  Google Scholar 

  68. Chu Y, Liu X, Li W, Hu X, Lin L, Feng X (2012) Asymmetric catalytic epoxidation of α, β-unsaturated carbonyl compounds with hydrogen peroxide: additive-free and wide substrate scope. Chem Sci 3:1996–2000. https://doi.org/10.1039/c2sc20218b

    Article  CAS  Google Scholar 

  69. Chu Y, Hao X, Lin L, Chen W, Li W, Tan F, Liu X, Feng X (2014) Chiral N, N′-dioxide−scandium (III)-catalyzed asymmetric epoxidation of 2-arylidene-1,3-diketones with hydrogen peroxide. Adv Synth Catal 356:2214–2218. https://doi.org/10.1002/adsc.201400341

    Article  CAS  Google Scholar 

  70. Zhang H, Yao Q, Lin L, Xu C, Liu X, Feng X (2017) Catalytic asymmetric epoxidation of electron-deficient enynes promoted by chiral N, N′-dioxide-scandium(III) complex. Adv Synth Catal 359:3454–3459. https://doi.org/10.1002/adsc.201700555

    Article  CAS  Google Scholar 

  71. Kiersch K, Li Y, Junge K, Szesni N, Fischer R, Kühn FE, Beller M (2012) Catalytic epoxidations with pyridinebis(oxazoline)−methyltrioxorhenium complexes and nitrogen-containing catalyst systems. Eur J Inorg Chem 2012:5972–5978. https://doi.org/10.1002/ejic.201200736

    Article  CAS  Google Scholar 

  72. Wang C, Yamamoto H (2014) Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide. J Am Chem Soc 136:1222–1225. https://doi.org/10.1021/ja411379e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Larionov VA, Markelova EP, Smol’yakov AF, Savel’yeva TF, Maleev VI, Belokon YN (2015) Chiral octahedral complexes of Co(III) as catalysts for asymmetric epoxidation of chalcones under phase transfer conditions. RSC Adv 5:72764−72771. https://doi.org/10.1039/c5ra11760g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research project 17-03-00991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman V. Ottenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottenbacher, R.V. (2019). Recent Advances in Bioinspired Asymmetric Epoxidations with Hydrogen Peroxide. In: Bryliakov, K. (eds) Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9751-7_8

Download citation

Publish with us

Policies and ethics