Skip to main content

Progress of N2 Fixation by Rice–Rhizobium Association

  • Chapter
  • First Online:
Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 36))

  • 456 Accesses

Abstract

Large amounts of nitrogen fertilizer are required for successful rice production, which is very costly and hazardous to the environment. The biofertilizer application is an alternative source of chemical fertilizer that can create an environment-friendly sustainable rice production system. They are microbial inoculum often used for boosting crop productivity. Recently, the application of rhizobia biofertilizer has gained prominence for a sustainable rice production system. A large body of researches has been performed to develop a suitable rhizobia biofertilizer to increase rice production. However, the success rate is not satisfactory, and this chapter discusses the progress and challenges of developing suitable biofertilizers for rice cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali-Tan KZ, Radziah O, Halimi MS, Rahim KBA, Abdullah MZ, Shamsuddin ZH (2017) Growth and yield responses of rice cv. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-N rates. Bangladesh J Bot 46(1):481–488

    Google Scholar 

  • Al-Mallah MK, Davey MR et al (1989) Formation of nodular structures on rice seedlings by rhizobia. J Exp Bot 40:473–478. https://doi.org/10.1007/BF00011323

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N et al (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth-promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67. https://doi.org/10.1023/A:1004326910584

    Article  CAS  Google Scholar 

  • Appl M (1982) The Haber–Bosch process and the development of chemical engineering. In: A century of chemical engineering. Plenum Press, New York, NY, pp 29–54

    Chapter  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182. https://doi.org/10.1007/s00374-011-0614-9

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK et al (2000a) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886. https://doi.org/10.2134/agronj2000.925880x

    Article  Google Scholar 

  • Biswas JC, Ladha JK et al (2000b) Rhizobial inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650. https://doi.org/10.2136/sssaj2000.6451644x

    Article  CAS  Google Scholar 

  • Botsford JL, Lewis TA (1990) Osmoregulation in Rhizobium meliloti: production of glutamic acid in response to osmotic stress. Appl Environ Microbiol 56:488–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M et al (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Zhu H (2013) Are common symbiosis genes required for endophytic rice-rhizobial interactions? Plant Signal Behav 8(9):e25453. https://doi.org/10.4161/psb.25453

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Feng J, Hou B, Li F, Li Q, Hong G (2005) Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33:2540–2548. https://doi.org/10.1093/nar/gki537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury ATMA, Saleque MA, Zaman SK, Bhuiyan NI, Shah AL, Rahman MS (2013) Nitrogen fertilizer management strategies for rice production in Bangladesh. Biol Sci PJSIR 56(3):167–174

    Article  CAS  Google Scholar 

  • Cocking EC, Al-Mallah MK, Benson E, Davey MR (1990) Nodulation of non-legumes by rhizobia. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, NY, pp 813–823

    Chapter  Google Scholar 

  • Colnaghi R, Green A, He L, Rudnick P, Kennedy C (1997) Strategies for increased ammonium production in free-living or plant associated nitrogen fixing bacteria. Plant Soil 194:145–154

    Article  CAS  Google Scholar 

  • Dakora FD (1995) Plant flavonoids: biological molecules for useful exploitation. Aust J Plant Physiol 22:7–99

    Google Scholar 

  • Dasgupta D, Panda AK, Mishra R, Mahanty A, de Mandal S, Bisht SS (2021) Nif genes: tools for sustainable agriculture. Rec Adv Microb Biotechnol 2021:413–434

    Google Scholar 

  • De Bruijn FJ, Jing Y, Dazzo FB (1995) Potential and pitfalls of trying to extend symbiotic interactions of nitrogen-fixing organisms to presently non-nodulated plants, such as rice. Plant Soil 172:207–219

    Google Scholar 

  • Dixon R, Cheng Q, Shen G-F, Day A, Dowson-Day M (1997) Nif gene transfer and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203. https://doi.org/10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • Dutta S, Mishra AK, Kumar BSD (2007) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461. https://doi.org/10.1016/j.soilbio.2007.09.009

    Article  CAS  Google Scholar 

  • Eastwell KC, Sholberg PL, Sayler RJ (2006) Characterizing potential bacterial biocontrol agents for suppression of Rhizobium vitis, causal agent of crown gall disease in grapevines. Crop Prot 25(11):1191–1200

    Article  Google Scholar 

  • Elkan GH, Bunn CR (1992) The rhizobia. In: Balows A et al (eds) The prokaryotes, vol III, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Fagorzi C, Checcucci A, diCenzo G, Debiec-Andrzejewska K, Dziewit L, Pini F et al (2018) Harnessing rhizobia to improve heavy-metal phytoremediation by legumes. Genes 9:542. https://doi.org/10.3390/genes9110542

    Article  CAS  PubMed Central  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. https://doi.org/10.1126/science.1136674

    Article  CAS  PubMed  Google Scholar 

  • Goyal RK, Schmidt MA, Hynes MF (2021) Molecular biology in the improvement of biological nitrogen fixation by Rhizobia and extending the scope to cereals. Microorganisms 9(1):125. https://doi.org/10.3390/microorganisms9010125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  Google Scholar 

  • Hahn L, Sá EL, Osório BD, Machado RG, Damasceno RG, Giongo A (2016a) Rhizobial inoculation, alone or coinoculated with Azospirillum brasilense, promotes growth of wetland rice. Rev Brasileira Ciên Solo 40:e0160006. https://doi.org/10.1590/18069657rbcs20160006

    Article  CAS  Google Scholar 

  • Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J (2016b) Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 10:1642–1655. https://doi.org/10.1038/ismej.2015.237

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36(2):81–92

    Article  CAS  Google Scholar 

  • Hao X, Lin Y, Johnstone L, Baltrus D, Miller S, Wei G, Rensing C (2012) Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. J Bacteriol 194:736–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández Forte I, Nápoles García MC (2019) Rhizobia promote rice (Oryza sativa L.) growth: first evidence in Cuba. In: Zúñiga-Dávila D et al (eds) Microbial probiotics for agricultural systems. Sustainability in plant and crop protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_10

    Chapter  Google Scholar 

  • Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Rivero D, Nápoles MC (2021) Endophytic rhizobia promote the growth of Cuban rice cultivar. Symbiosis 85(2):175–190. https://doi.org/10.1007/s13199-021-00803-2

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1):1–18

    Article  CAS  Google Scholar 

  • Husssain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    CAS  Google Scholar 

  • Jian W, Susheng Y, Jilun L (1993) Studies on the salt tolerance of Rhizobium meliloti. Acta Microbiol Sin 33:260–267

    Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil. Adv Biochem Eng Biotechnol 4:49–89

    Google Scholar 

  • Kennedy IR, Pereg-Gerk L, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Khush GS, Bennett J (1992) Nodulation and nitrogen fixation in rice: potential and prospects. Documentation. International Rice Research Institute, Los Banos

    Google Scholar 

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Le Rudulier D, Bernard T (1986) Salt tolerance in Rhizobium: a possible role for betaines. FEMS Microbiol Rev 39:67–72

    Article  Google Scholar 

  • Liu H, Wang X, Qi H, Wang Q, Chen Y, Li Q, Zhang Y, Qiu L, Fontana JE, Zhang B, Wang W, Xie Y (2017) The infection and impact of Azorhizobium caulinodans ORS571 on wheat (Triticum aestivum L.). PLoS One 12(11):e0187947. https://doi.org/10.1371/journal.pone.0187947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342. https://doi.org/10.1007/BF00011472

    Article  CAS  Google Scholar 

  • Mia MAB (2015) Nutrition of crop. In: Plants. Nova Science Publisher, New York, NY

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2009) Enhanced emergence and vigour seedling production of rice through plant growth promoting bacterial inoculation. Res J Seed Sci 2:96–104

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2013) Biofertilizer for banana production. Lambert Academic Publisher, Germany

    Google Scholar 

  • Mia MAB, Hossain M, Shamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen nutrition in crops, with special reference to rice and banana. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin

    Google Scholar 

  • Mirza BS, Mirza MS, Bano A, Malik KA (2007) Coinoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust J Exp Agric 47:1008–1015

    Article  Google Scholar 

  • Nahar S, Hasan MF, Sikdar B et al (2021) Effect of rhizosphere microbiome on different crop growing fields in various rice cultivars and its molecular approaches for sustainable agro-ecosystem. J Crop Sci Biotechnol 24(5):521–531. https://doi.org/10.1007/s12892-021-00099-0

    Article  CAS  Google Scholar 

  • Naher UA, Radziah O, Shamsuddin ZH, Halimi MS, Razi IM (2009) Isolation of diazotrophs from different soils of Tanjong Karang rice growing area in Malaysia. Int J Agric Biol 11:547–552

    CAS  Google Scholar 

  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Imperial J, Rey L, Ruiz-Argueso T, Martinez RE (2013) Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol Phylogenet Evol 67(3):626–630

    Article  PubMed  Google Scholar 

  • Padukkage D, Geekiyanage S, Reparaz JM et al (2021) Bradyrhizobium japonicum, B. elkanii and B. diazoefficiens interact with Rice (Oryza sativa), promote growth and increase yield. Curr Microbiol 78:417–428. https://doi.org/10.1007/s00284-020-02249-z

    Article  CAS  PubMed  Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176:1–3

    Article  Google Scholar 

  • Peng M, Wang D, Jiang Y (2008) An institution-based view of international business strategy: a focus on emerging economies. J Int Bus Stud 39:920–936. https://doi.org/10.1057/palgrave.jibs.8400377

    Article  Google Scholar 

  • Perrine-Walker FM, Prayitno J, Rolfe BG, Weinman JJ, Hocart CH (2007) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58(12):3343–3350. https://doi.org/10.1093/jxb/erm181

    Article  CAS  PubMed  Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, de Bruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81–98. https://doi.org/10.1023/A:1004243915997

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4):319–339

    Article  CAS  PubMed  Google Scholar 

  • Rolfe BG, Bender GL (1990) Evolving a Rhizobium for non-legume nodulation. In: Gresshoff PM et al (eds) Nitrogen fixation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6432-0_65

    Chapter  Google Scholar 

  • Santos ML, Berlitz DL, Wiest SL, Schünemann R, Knaak N, Fiuza LM (2018) Benefits associated with the interaction of endophytic bacteria and plants. Braz Arch Biol Technol 61:e18160431. https://doi.org/10.1590/1678-4324-2018160431

    Article  CAS  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    Article  CAS  PubMed  Google Scholar 

  • Satyanandam T, Babu K, Suneeta D, Bhaskararao CH, Rosaiah G, Vijayalakshmi M (2010) Isolation and screening of indigenous rhizobia from black gram cultivated in fallow rice soils for plant growth promoting traits. Malaysian J Soil Sci 25:125–142

    Google Scholar 

  • Shahdi KA (2021) Effect of Rhizobium trifolii, Pseudomonas fluorescens and Azotobacter chroococcum on growth and yield of crimson clover and rice in a rice-clover rotation. J Crop Prod Process 10(4):17–31

    Google Scholar 

  • Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan AJ, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H et al (2005) Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet 19(2):57–85

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Mishra RPN, Jaiswal HK, Kumar V, Pandev SP, Rao SB, Annapurna K (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349

    Article  CAS  PubMed  Google Scholar 

  • Singh MK, Singh SK, Singh DP (2018) Novel bacterium Rhizobium undicola isolated from the upland cultivated rice Oryza sativa L. promoting plant growth. J Pharmacogn Phytochem 7(3):2437–2444

    CAS  Google Scholar 

  • Smith LT, Allaith AM, Smith GM (1994a) Mechanism of osmotically-regulated N-acetylglutaminyl glutamine amide production in Rhizobium meliloti. Plant Soil 161:103–108

    Article  CAS  Google Scholar 

  • Smith LT, Smith GM, Desouza MR, Pocard JM, Le Rudulier D, Madkour MA (1994b) Osmoregulation in Rhizobium meliloti: mechanism and control by other environmental signals. J Exp Zool 268:162–292

    Article  CAS  Google Scholar 

  • Sofi P, Wani S (2007) Prospects of nitrogen fixation in rice. Asian J Plant Sci 6:203–213

    Article  CAS  Google Scholar 

  • Stoltzfus JR, So R, Malarvizhi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Habib H, Shamsuddin ZH (2014) Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am J Agric Biol Sci 9(3):342–360

    Article  Google Scholar 

  • Tchan YT, Kennedy TR (1989) Possible N2-fixing root nodule induced in non-legumes. Agric Sci 2:57–59

    Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soil. Front Plant Sci 6:32. https://doi.org/10.3389/fpls.2015.00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129-142. https://doi.org/10.1007/s11104-010-0454-7

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, Bruijn FD, Stoltzfus J, Buckley D, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Ladha JK et al (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Developments in plant and soil sciences, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7113-7_10

    Chapter  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Gracia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G et al (eds) Biological nitrogen fixation. Chapman and Hall, New York, NY, pp 43–86

    Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun L, Ma X, Sui XH, Jiang R (2011) Rhizobium pseudoryzae sp. nov. isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61(10):2425–2429

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012) Mesorhizobium muleiense sp nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Zhang J, Sun L, Zhang RJ, Zhang CW, Yin HQ, Zhang XX (2017) Rhizobium oryziradicis sp. nov. isolated from rice roots. Int J Syst Evol Microbiol 67(4):963–968

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhao X, Wang J, Gong Q, Zhang X, Zhang G (2020) Isolation, identification and characterization of endophytic bacterium Rhizobium oryzihabitans sp. nov., from rice root with biotechnological potential in agriculture. Microorganisms 8(4):608. https://doi.org/10.3390/microorganisms8040608

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

Not applicable.

Conflict of Interest

Author(s) declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baset Mia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuan, A.T.K., Ghazali, A.H.A., Mia, M.A.B. (2022). Progress of N2 Fixation by Rice–Rhizobium Association. In: Maheshwari, D.K., Dobhal, R., Dheeman, S. (eds) Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes. Microorganisms for Sustainability, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-19-4906-7_15

Download citation

Publish with us

Policies and ethics