Skip to main content

Stabilized Finite Element Formulation and High-Performance Solver for Slightly Compressible Navier–Stokes Equations

  • Chapter
  • First Online:
Advances in Fluid Mechanics

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 802 Accesses

Abstract

In this study, a high-performance stabilized finite element-based Navier–Stokes formulation for slightly compressible flows is presented for aeroacoustic modeling. Slightly compressible flows are often used to describe waves such as the acoustic waves that have isentropic properties. Here, the slight compressibility is added onto the incompressible form of N–S equations without the full implementation of the coupled energy equation with the continuity and momentum equations. However, the inclusion of the slight compressibility can cause severe numerical instabilities in finite element formulations due to the difficulties that arise in stabilization techniques and parameters. Here, SUPG/PSPG stabilization techniques are adopted for its stabilized, equal-order scheme for finite elements and Newton’s method is used to solve the linearized system. To solve the system matrix efficiently utilizing parallelization processes, a tailored preconditioner based on an incomplete Schur complement is derived and implemented. Two numerical tests are studied to examine the solver’s accuracy in solving aeroacoustic problems. We further evaluate its efficiency performance with different variations of parallel ILU factorization in the preconditioner. The numerical results indicate that the solver has great performance in both accuracy and efficiency with different aeroacoustic problems for various time scales. This study also demonstrates the effectiveness of modeling aeroacoustics using time-based finite element formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhyankar, S., et al.: PETSc/TS: a modern scalable ODE/DAE solver library (2018). arXiv preprint arXiv:1806.01437

  2. Amestoy, P.R., Duff, I.S., L’excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000)

    Article  Google Scholar 

  3. Arndt, D., et al.: The deal.II finite element library: design, features, and insights. Comput. Math. Appl. (2020). https://doi.org/10.1016/j.camwa.2020.02.022

  4. Arndt, D., et al.: The deal.II library, version 9.2. J. Numer. Math. 28(3), 131–146 (2020). https://doi.org/10.1515/jnma-2020-0043. https://dealii.org/deal92-preprint.pdf

  5. Balay, S., et al.: PETSc users manual. Technical report, ANL-95/11 - Revision 3.14. Argonne National Laboratory (2020). https://www.mcs.anl.gov/petsc

  6. Balay, S., et al.: PETSc web page (2019). https://www.mcs.anl.gov/petsc. https://www.mcs.anl.gov/petsc

  7. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II - a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    Book  Google Scholar 

  9. Cheng, J., Yu, F., Zhang, L.T.: Openifem: a high performance modular open-source software of the immersed finite element method for fluid-structure interactions. Comput. Model. Eng. Sci. 119(1), 91–124 (2019)

    Google Scholar 

  10. Chow, E., Anzt, H., Dongarra, J.: Asynchronous iterative algorithm for computing incomplete factorizations on GPUs. In: International Conference on High Performance Computing, pp. 1–16. Springer, Berlin (2015)

    Google Scholar 

  11. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput. 37(2), C169–C193 (2015)

    Article  MathSciNet  Google Scholar 

  12. Da Cunha, R.D., Hopkins, T.: A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comput. Math. 2(3), 261–277 (1994)

    Article  MathSciNet  Google Scholar 

  13. Dubois, P.F., Greenbaum, A., Rodrigue, G.H.: Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22(3), 257–268 (1979)

    Article  MathSciNet  Google Scholar 

  14. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188(2), 365–398 (2003)

    Article  MathSciNet  Google Scholar 

  15. Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 267–294. Springer (2006)

    Google Scholar 

  16. Falgout, R.D., Yang, U.M.: Hypre: a library of high performance preconditioners. In: International Conference on Computational Science, pp. 632–641. Springer (2002)

    Google Scholar 

  17. Hardin, J.C., Pope, D.S.: An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6(5–6), 323–340 (1994)

    Article  Google Scholar 

  18. Hirschberg, A., Rienstra, S.W.: An introduction to aeroacoustics. In: Eindhoven University of Technology (2004)

    Google Scholar 

  19. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Inc. (2000)

    Google Scholar 

  20. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73(2), 173–189 (1989)

    Google Scholar 

  21. Kinsler, L.E., et al.: Fundamentals of Acoustics, 4th edn. Wiley-VCH (1999). ISBN 0-471-84789-5

    Google Scholar 

  22. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211(1107), 564–587 (1952)

    Google Scholar 

  23. Lighthill, M.J.: On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 222(1148) 1–32 (1954)

    Google Scholar 

  24. Munz, C.-D., Dumbser, M., Roller, S.: Linearized acoustic perturbation equations for lowMach number flowwith variable density and temperature. J. Comput. Phys. 224(1), 352–364 (2007)

    Article  MathSciNet  Google Scholar 

  25. Olshanskii, M., Reusken, A.: Grad-div stablilization for Stokes equations. Math. Comput. 73(248), 1699–1718

    Google Scholar 

  26. Olshanskii, M., et al.: Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198(49–52), 3975–3988 (2009)

    Article  MathSciNet  Google Scholar 

  27. Seo, J.H., Moon, Y.J.: Linearized perturbed compressible equations for low Mach number aeroacoustics. J. Comput. Phys. 218(2), 702–719 (2006)

    Article  MathSciNet  Google Scholar 

  28. Seo, J.-H., Moon, Y.J.: Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J. 43(8), 1716–1724 (2005)

    Article  Google Scholar 

  29. Tezduyar, T., Sathe, S.: Stabilization parameters in SUPG and PSPG formulations. J. Comput. Appl. Mech. 4(1), 71–88 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1991)

    Article  MathSciNet  Google Scholar 

  31. Wang, S.X., Zhang, L.T., Liu, W.K.: On computational issues of immersed finite element methods. J. Comput. Phys. 228(7), 2535–2551 (2009)

    Article  Google Scholar 

  32. Wang, X., Wang, C., Zhang, L.T.: Semi-implicit formulation of the immersed finite element method. Comput. Mech. 49(4), 421–430 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Zhang, L.T.: Modified immersed finite element method for fully-coupled fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 267, 150–169 (2013)

    Article  MathSciNet  Google Scholar 

  34. Washio, T., et al.: A robust preconditioner for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 194(39–41), 4027–4047 (2005)

    Article  MathSciNet  Google Scholar 

  35. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264(1151), 321–342 (1969)

    Article  Google Scholar 

  36. Yang et al. J.: The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the immersed finite element method. J. Fluids Struct. 76 (2018). ISSN: 10958622. https://doi.org/10.1016/j.jfluidstructs.2017.09.002.

  37. Yang, J., et al.: Fully-coupled aeroelastic simulation with fluid compressibility- For application to vocal fold vibration. Comput. Methods Appl. Mech. Eng. 315, 584–606 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhang, F.: The Schur Complement and Its Applications, vol. 4. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  39. Zhang, L.T., Wagner, G., Liu, W.K.: Modeling and simulation of fluid structure interaction by meshfree and FEM. Commun. Numer. Methods Eng. 19, 615–621 (2003)

    Article  Google Scholar 

  40. Zhang, L.T.: Modeling of soft tissues interacting with fluid (blood or air) using the immersed finite element method. J. Biomed. Sci. Eng. 7(3), 130 (2014)

    Article  Google Scholar 

  41. Zhang, L.T., Gay, M.: Imposing rigidity constraints on immersed objects in unsteady fluid flows. In: Comput. Mech. 42(3), 357–370 (2008)

    Google Scholar 

  42. Zhang, L.T., Krane, M.H., Yu, F.: Modeling of slightlycompressible isentropic flows and compressibility effects on fluid-structure interactions. Comput. Fluids 182, 108–117 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Author LTZ would like to acknowledge partial supports from NIH-2R01DC005642-14 and Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy T. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, F., Zhang, L.T. (2022). Stabilized Finite Element Formulation and High-Performance Solver for Slightly Compressible Navier–Stokes Equations. In: Zeidan, D., Zhang, L.T., Da Silva, E.G., Merker, J. (eds) Advances in Fluid Mechanics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1438-6_6

Download citation

Publish with us

Policies and ethics