Skip to main content

Pharmaceutical Nanotechnology

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Pharmaceutical nanotechnology is a modern and unique branch of pharmaceutics based on nanotechnology that shows potential applications in treating diseases. This branch is mainly concerned with nano-scaled formulations with versatile advantages. Pharmaceutical nanotechnology arouse great impact onto the formulation design of both academy and industry. Herein, we reviewed the characteristics of nano-drug delivery systems. Further, we discuss the various types of nanoformulations and their applications. Though still with challenges, pharmaceutical nanotechnology, with no doubt, casts new lights in modulating the drug delivery, optimizing the in vivo distribution and increasing the treating efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang Fang WL, Wu W, Huang Y (2016) Pharmaceutics, 8th edn. People’s Medical Publishing House, Beijing

    Google Scholar 

  2. Jianping Liu JS, Zhang N, Jiang C (2016) Biopharmaceutics and pharmacokinetics, 5th edn. People’s Medical Publishing House, Beijing

    Google Scholar 

  3. Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B (2021) Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 50(9):5397–5434. https://doi.org/10.1039/d0cs01127d

    Article  Google Scholar 

  4. Reddy S, Tatiparti K, Sau S, Iyer AK (2021) Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today. https://doi.org/10.1016/j.drudis.2021.04.008

  5. Majumder J, Taratula O, Minko T (2019) Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 144:57–77. https://doi.org/10.1016/j.addr.2019.07.010

    Article  Google Scholar 

  6. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124. https://doi.org/10.1038/s41573-020-0090-8

    Article  Google Scholar 

  7. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C (2019) Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 27(7):742–761. https://doi.org/10.1080/1061186X.2018.1527337

    Article  Google Scholar 

  8. Soe ZC, Thapa RK, Ou W, Gautam M, Nguyen HT, Jin SG et al (2018) Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces 170:718–728. https://doi.org/10.1016/j.colsurfb.2018.07.013

    Article  Google Scholar 

  9. Yang W, Hu Q, Xu Y, Liu H, Zhong L (2018) Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater Sci Eng C Mater Biol Appl 89:328–335. https://doi.org/10.1016/j.msec.2018.04.011

    Article  Google Scholar 

  10. Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK (2018) Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 19(1):166–175. https://doi.org/10.1208/s12249-017-0833-y

    Article  Google Scholar 

  11. Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA (2014) Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22(3):231–239. https://doi.org/10.1016/j.jsps.2013.07.003

    Article  Google Scholar 

  12. Huang Y, Tao Q, Hou D, Hu S, Tian S, Chen Y et al (2017) A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int J Nanomedicine 12:1731–1745. https://doi.org/10.2147/IJN.S122747

    Article  Google Scholar 

  13. Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A et al (2019) Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 315:1–22. https://doi.org/10.1016/j.jconrel.2019.09.018

    Article  Google Scholar 

  14. Hsu HJ, Bugno J, Lee SR, Hong S (2017) Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1). https://doi.org/10.1002/wnan.1409

  15. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9). https://doi.org/10.3390/molecules22091401

  16. Kim Y, Park EJ, Na DH (2018) Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res 41(6):571–582. https://doi.org/10.1007/s12272-018-1008-4

    Article  Google Scholar 

  17. Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C (2020) Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 52(1):66–124. https://doi.org/10.1080/03602532.2020.1716784

    Article  Google Scholar 

  18. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C (2020) Antibody-drug conjugates: the last decade. Pharmaceuticals 13(9). https://doi.org/10.3390/ph13090245

  19. Leung D, Wurst JM, Liu T, Martinez RM, Datta-Mannan A, Feng Y (2020) Antibody conjugates – recent advances and future innovations. Antibodies 9(1). https://doi.org/10.3390/antib9010002

  20. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476. https://doi.org/10.1016/s0169-409x(02)00022-4

    Article  Google Scholar 

  21. Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K et al (2019) Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal 13(3):319–330. https://doi.org/10.1007/s12079-018-0492-0

    Article  Google Scholar 

  22. Rosen CB, Francis MB (2017) Targeting the N terminus for site-selective protein modification. Nat Chem Biol 13(7):697–705. https://doi.org/10.1038/nchembio.2416

    Article  Google Scholar 

  23. Qian M, Zhang Q, Lu J, Zhang J, Wang Y, Shangguan W et al (2021) Long-acting human interleukin 2 bioconjugate modified with fatty acids by sortase A. Bioconjug Chem 32(3):615–625. https://doi.org/10.1021/acs.bioconjchem.1c00062

    Article  Google Scholar 

  24. Sobot D, Mura S, Yesylevskyy SO, Dalbin L, Cayre F, Bort G et al (2017) Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nat Commun 8(1):15678. https://doi.org/10.1038/ncomms15678

    Article  Google Scholar 

  25. Chen ML, John M, Lee SL, Tyner KM (2017) Development considerations for nanocrystal drug products. AAPS J 19(3):642–651. https://doi.org/10.1208/s12248-017-0064-x

    Article  Google Scholar 

  26. Thakkar S, Shah V, Misra M, Kalia K (2017) Nanocrystal based drug delivery system: conventional and current scenario. Recent Pat Nanotechnol 11(2):130–145. https://doi.org/10.2174/1872210510666161014122439

    Article  Google Scholar 

  27. Fan M, Geng S, Liu Y, Wang J, Wang Y, Zhong J et al (2018) Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment. Curr Pharm Des 24(21):2416–2424. https://doi.org/10.2174/1381612824666180515154109

    Article  Google Scholar 

  28. Patel V, Sharma OP, Mehta T (2018) Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv 15(4):351–368. https://doi.org/10.1080/17425247.2018.1444025

    Article  Google Scholar 

  29. Skrabalak SE, Xia Y (2009) Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3(1):10–15. https://doi.org/10.1021/nn800875p

    Article  Google Scholar 

  30. Nagarwal RC, Kumar R, Dhanawat M, Das N, Pandit JK (2011) Nanocrystal technology in the delivery of poorly soluble drugs: an overview. Curr Drug Deliv 8(4):398–406. https://doi.org/10.2174/156720111795767988

    Article  Google Scholar 

  31. Cheng Z, Lian Y, Kamal Z, Ma X, Chen J, Zhou X et al (2018) Nanocrystals technology for pharmaceutical science. Curr Pharm Des 24(21):2497–2507. https://doi.org/10.2174/1381612824666180518082420

    Article  Google Scholar 

  32. Fuhrmann K, Połomska A, Aeberli C, Castagner B, Gauthier MA, Leroux JC (2013) Modular design of redox-responsive stabilizers for nanocrystals. ACS Nano 7(9):8243–8250. https://doi.org/10.1021/nn4037317

    Article  Google Scholar 

  33. Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12(21):2677–2692. https://doi.org/10.2217/nnm-2017-0225

    Article  Google Scholar 

  34. Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220(Pt B):600–607. https://doi.org/10.1016/j.jconrel.2015.07.019

    Article  Google Scholar 

  35. Zou S, Wang B, Wang C, Wang Q, Zhang L (2020) Cell membrane-coated nanoparticles: research advances. Nanomedicine 15(6):625–641. https://doi.org/10.2217/nnm-2019-0388

    Article  Google Scholar 

  36. Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW (2020) Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 112:1–13. https://doi.org/10.1016/j.actbio.2020.05.028

    Article  Google Scholar 

  37. Xia Q, Zhang Y, Li Z, Hou X, Feng N (2019) Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9(4):675–689. https://doi.org/10.1016/j.apsb.2019.01.011

    Article  Google Scholar 

  38. Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ et al (2021) Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 9(4):1088–1103. https://doi.org/10.1039/d0bm01164a

    Article  Google Scholar 

  39. Dash P, Piras AM, Dash M (2020) Cell membrane coated nanocarriers – an efficient biomimetic platform for targeted therapy. J Control Release 327:546–570. https://doi.org/10.1016/j.jconrel.2020.09.012

    Article  Google Scholar 

  40. Xu C, Jiang Y, Han Y, Pu K, Zhang R (2021) A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv Mater 33(14):2008061. https://doi.org/10.1002/adma.202008061

    Article  Google Scholar 

  41. Yang B, Chen Y, Shi J (2019) Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater 31(2):e1802896. https://doi.org/10.1002/adma.201802896

    Article  Google Scholar 

  42. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804. https://doi.org/10.7150/thno.18133

    Article  Google Scholar 

  43. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7). https://doi.org/10.3390/cells8070727

  44. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P (2020) Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 15:6917–6934. https://doi.org/10.2147/ijn.S264498

    Article  Google Scholar 

  45. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H (2020) Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Control Release 318:1–15. https://doi.org/10.1016/j.jconrel.2019.12.005

    Article  Google Scholar 

  46. He L, Chen Y, Ke Z, Pang M, Yang B, Feng F et al (2020) Exosomes derived from miRNA-210 overexpressing bone marrow mesenchymal stem cells protect lipopolysaccharide induced chondrocytes injury via the NF-κB pathway. Gene 751:144764. https://doi.org/10.1016/j.gene.2020.144764

    Article  Google Scholar 

  47. Wu SH, Hung Y, Mou CY (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Commun 47(36):9972–9985. https://doi.org/10.1039/c1cc11760b

    Article  Google Scholar 

  48. Aquib M, Farooq MA, Banerjee P, Akhtar F, Filli MS, Boakye-Yiadom KO et al (2019) Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use. J Biomed Mater Res A 107(12):2643–2666. https://doi.org/10.1002/jbm.a.36770

    Article  Google Scholar 

  49. Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB et al (2020) Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater 32(23):e1907035. https://doi.org/10.1002/adma.201907035

    Article  Google Scholar 

  50. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G et al (2014) Sol-gel processing of silica nanoparticles and their applications. Adv Colloid Interf Sci 214:17–37. https://doi.org/10.1016/j.cis.2014.10.007

    Article  Google Scholar 

  51. Gonçalves MC (2018) Sol-gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products. Molecules 23(8). https://doi.org/10.3390/molecules23082021

  52. Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M et al (2021) Carbon dots as promising tools for cancer diagnosis and therapy. Cancers 13(9). https://doi.org/10.3390/cancers13091991

  53. Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y et al (2016) Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 28(33):7129–7136. https://doi.org/10.1002/adma.201601902

    Article  Google Scholar 

  54. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S et al (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13(2):1602225. https://doi.org/10.1002/smll.201602225

    Article  Google Scholar 

  55. Song L, Zhao N, Xu F-J (2017) Hydroxyl-rich polycation brushed multifunctional rare-Earth-gold core-shell nanorods for versatile therapy platforms. Adv Funct Mater 27(32):1701255. https://doi.org/10.1002/adfm.201701255

    Article  Google Scholar 

  56. Zhao Q, Lin Y, Han N, Li X, Geng H, Wang X et al (2017) Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv 24(Suppl 1):94–107. https://doi.org/10.1080/10717544.2017.1399300

    Article  Google Scholar 

  57. Anuja R, Sanjay S, Dinesh KM (2018) Carbon nanotubes: classification, method of preparation and pharmaceutical application. Curr Drug Deliv 15(5):620–629. https://doi.org/10.2174/1567201815666171221124711

    Article  Google Scholar 

  58. Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng C 100:616–630. https://doi.org/10.1016/j.msec.2019.03.043

    Article  Google Scholar 

  59. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16(1):69–78. https://doi.org/10.1080/17425247.2019.1554647

    Article  Google Scholar 

  60. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F et al (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325. https://doi.org/10.1016/j.addr.2019.01.005

    Article  Google Scholar 

  61. Alphandéry E (2020) Bio-synthesized iron oxide nanoparticles for cancer treatment. Int J Pharm 586:119472. https://doi.org/10.1016/j.ijpharm.2020.119472

    Article  Google Scholar 

  62. Wen J, Yang K, Sun S (2020) MnO2-based nanosystems for cancer therapy. Chem Commun 56(52):7065–7079. https://doi.org/10.1039/D0CC02782K

    Article  Google Scholar 

  63. Yang G, Ji J, Liu Z (2021) Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13(6):e1720. https://doi.org/10.1002/wnan.1720

    Article  Google Scholar 

  64. Huang D, He B, Mi P (2019) Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomater Sci 7(10):3942–3960. https://doi.org/10.1039/C9BM00831D

    Article  Google Scholar 

  65. Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F (2015) Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv 12(10):1649–1660. https://doi.org/10.1517/17425247.2015.1049530

    Article  Google Scholar 

  66. Khalifehzadeh R, Arami H (2020) Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interf Sci 279:102157. https://doi.org/10.1016/j.cis.2020.102157

    Article  Google Scholar 

  67. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 46(Suppl 1):1210–1220. https://doi.org/10.1080/21691401.2018.1449118

    Article  Google Scholar 

  68. Nishimura T, Sasaki Y, Akiyoshi K (2017) Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy. Adv Mater 29(36). https://doi.org/10.1002/adma.201702406

  69. Iyisan B, Landfester K (2019) Modular approach for the design of smart polymeric nanocapsules. Macromol Rapid Commun 40(1):1800577. https://doi.org/10.1002/marc.201800577

    Article  Google Scholar 

  70. Marturano V, Cerruti P, Giamberini M, Tylkowski B, Ambrogi V (2017) Light-responsive polymer micro- and nano-capsules. Polymers 9(1). https://doi.org/10.3390/polym9010008

  71. Bollhorst T, Rezwan K, Maas M (2017) Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 46(8):2091–2126. https://doi.org/10.1039/C6CS00632A

    Article  Google Scholar 

  72. Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R et al (2019) A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol 14(10):974–980. https://doi.org/10.1038/s41565-019-0539-2

    Article  Google Scholar 

  73. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK et al (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252:28–49. https://doi.org/10.1016/j.jconrel.2017.03.008

    Article  Google Scholar 

  74. Samia O, Hanan R, Kamal el T (2012) Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 19(1):58–67. https://doi.org/10.3109/10717544.2011.644349

    Article  Google Scholar 

  75. Jiang Y, Hardie J, Liu Y, Ray M, Luo X, Das R et al (2018) Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment. J Control Release 283:235–240. https://doi.org/10.1016/j.jconrel.2018.06.001

    Article  Google Scholar 

  76. Cai L, Yang C, Jia W, Liu Y, Xie R, Lei T et al (2020) Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer’s disease. Adv Funct Mater 30(27). https://doi.org/10.1002/adfm.201909999

  77. Zou Y, Liu Y, Yang Z, Zhang D, Lu Y, Zheng M et al (2018) Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv Mater 30(51):e1803717. https://doi.org/10.1002/adma.201803717

    Article  Google Scholar 

  78. Zhou H, Qian W, Uckun FM, Wang L, Wang YA, Chen H et al (2015) IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 9(8):7976–7991. https://doi.org/10.1021/acsnano.5b01288

    Article  Google Scholar 

  79. Fan JX, Liu XH, Wang XN, Niu MT, Chen QW, Zheng DW et al (2021) Antibody engineered platelets attracted by bacteria-induced tumor-specific blood coagulation for checkpoint inhibitor immunotherapy. Adv Funct Mater 31(22). https://doi.org/10.1002/adfm.202009744

  80. Chen L, Zhou L, Wang C, Han Y, Lu Y, Liu J et al (2019) Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Adv Mater 31(52):e1904997. https://doi.org/10.1002/adma.201904997

    Article  Google Scholar 

  81. Gao X, Li S, Ding F, Liu X, Wu Y, Li J et al (2021) A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy. Adv Mater 33(9):e2006116. https://doi.org/10.1002/adma.202006116

    Article  Google Scholar 

  82. Liew SS, Zhou J, Li L, Yao SQ (2021) Co-delivery of proteins and small molecule drugs for mitochondria-targeted combination therapy. Chem Commun 57(26):3215–3218. https://doi.org/10.1039/d0cc08020a

    Article  Google Scholar 

  83. Zhao Q, Gong Z, Li Z, Wang J, Zhang J, Zhao Z et al (2021) Target reprogramming lysosomes of CD8+ T cells by a mineralized metal-organic framework for cancer immunotherapy. Adv Mater 33(17):e2100616. https://doi.org/10.1002/adma.202100616

    Article  Google Scholar 

  84. Pan L, Liu J, He Q, Shi J (2014) MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater 26(39):6742–6748. https://doi.org/10.1002/adma.201402752

    Article  Google Scholar 

  85. Wang S, Yu G, Wang Z, Jacobson O, Tian R, Lin LS et al (2018) Hierarchical tumor microenvironment-responsive nanomedicine for programmed delivery of chemotherapeutics. Adv Mater 2018:e1803926. https://doi.org/10.1002/adma.201803926

    Article  Google Scholar 

  86. Wang T, Wang D, Yu H, Wang M, Liu J, Feng B et al (2016) Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 10(3):3496–3508. https://doi.org/10.1021/acsnano.5b07706

    Article  Google Scholar 

  87. Guo X, Wang L, Duval K, Fan J, Zhou S, Chen Z (2018) Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv Mater 30(3). https://doi.org/10.1002/adma.201705436

  88. Wagner J, Gossl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O et al (2021) Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 15(3):4450–4466. https://doi.org/10.1021/acsnano.0c08384

    Article  Google Scholar 

  89. Liu G, Tsai HI, Zeng X, Zuo Y, Tao W, Han J et al (2017) Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics 7(5):1192–1203. https://doi.org/10.7150/thno.17881

    Article  Google Scholar 

  90. Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding J et al (2021) Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett 21(5):2088–2093. https://doi.org/10.1021/acs.nanolett.0c04778

    Article  Google Scholar 

  91. Hao Y, Chen Y, He X, Yu Y, Han R, Li Y et al (2020) Polymeric nanoparticles with ROS-responsive prodrug and platinum nanozyme for enhanced chemophotodynamic therapy of colon cancer. Adv Sci 7(20):2001853. https://doi.org/10.1002/advs.202001853

    Article  Google Scholar 

  92. Wu W, Pu Y, Shi J (2021) Dual size/charge-switchable nanocatalytic medicine for deep tumor therapy. Adv Sci 8(9):2002816. https://doi.org/10.1002/advs.202002816

    Article  Google Scholar 

  93. Jia X, Zhang Y, Zou Y, Wang Y, Niu D, He Q et al (2018) Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv Mater 30(30):e1704490. https://doi.org/10.1002/adma.201704490

    Article  Google Scholar 

  94. Zou Y, Sun X, Wang Y, Yan C, Liu Y, Li J et al (2020) Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv Mater 32(24):e2000416. https://doi.org/10.1002/adma.202000416

    Article  Google Scholar 

  95. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(4):3491–3498. https://doi.org/10.1021/nn300524f

    Article  Google Scholar 

  96. Chen WH, Luo GF, Lei Q, Hong S, Qiu WX, Liu LH et al (2017) Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 11(2):1419–1431. https://doi.org/10.1021/acsnano.6b06658

    Article  Google Scholar 

  97. Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5:3364. https://doi.org/10.1038/ncomms4364

    Article  Google Scholar 

  98. Sun L, Shen F, Tian L, Tao H, Xiong Z, Xu J et al (2021) ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv Mater 33(18):e2007910. https://doi.org/10.1002/adma.202007910

    Article  Google Scholar 

  99. Li SY, Cheng H, Qiu WX, Zhang L, Wan SS, Zeng JY et al (2017) Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 142:149–161. https://doi.org/10.1016/j.biomaterials.2017.07.026

    Article  Google Scholar 

  100. Yang G, Phua SZF, Lim WQ, Zhang R, Feng L, Liu G et al (2019) A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv Mater 31(25):e1901513. https://doi.org/10.1002/adma.201901513

    Article  Google Scholar 

  101. Araki T, Murayama S, Usui K, Shimada T, Aoki I, Karasawa S (2017) Self-assembly behavior of emissive urea benzene derivatives enables heat-induced accumulation in tumor tissue. Nano Lett 17(4):2397–2403. https://doi.org/10.1021/acs.nanolett.6b05371

    Article  Google Scholar 

  102. Meng Z, Chao Y, Zhou X, Liang C, Liu J, Zhang R et al (2018) Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 12(9):9412–9422. https://doi.org/10.1021/acsnano.8b04544

    Article  Google Scholar 

  103. Feng L, Xie R, Wang C, Gai S, He F, Yang D et al (2018) Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 12(11):11000–11012. https://doi.org/10.1021/acsnano.8b05042

    Article  Google Scholar 

  104. Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY et al (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed Engl 52(16):4384–4388. https://doi.org/10.1002/anie.201207721

    Article  Google Scholar 

  105. Zhang P, Wang Y, Lian J, Shen Q, Wang C, Ma B et al (2017) Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo. Adv Mater 29(36). https://doi.org/10.1002/adma.201702311

  106. Fisher RK, Mattern-Schain SI, Best MD, Kirkpatrick SS, Freeman MB, Grandas OH et al (2017) Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J Surg Res 219:136–144. https://doi.org/10.1016/j.jss.2017.05.111

    Article  Google Scholar 

  107. Zhang L, Wang P, Feng Q, Wang N, Chen Z, Huang Y et al (2017) Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater 9(10):e441. https://doi.org/10.1038/am.2017.185

    Article  Google Scholar 

  108. Ruan C, Liu L, Wang Q, Chen X, Chen Q, Lu Y et al (2018) Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Appl Mater Interfaces 10(12):10398–10408. https://doi.org/10.1021/acsami.8b01712

    Article  Google Scholar 

  109. Markham MJ, Wachter K, Agarwal N, Bertagnolli MM, Chang SM, Dale W et al (2020) Clinical Cancer Advances 2020: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 38(10):1081. https://doi.org/10.1200/JCO.19.03141

    Article  Google Scholar 

  110. Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5(2):143–159. https://doi.org/10.1016/j.nantod.2010.03.003

    Article  Google Scholar 

  111. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine 12(1):81–103. https://doi.org/10.1016/j.nano.2015.08.006

    Article  Google Scholar 

  112. Lu J, Liu X, Liao Y-P, Wang X, Ahmed A, Jiang W et al (2018) Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12(11):11041–11061. https://doi.org/10.1021/acsnano.8b05189

    Article  Google Scholar 

  113. Liang K, Chung JE, Gao SJ, Yongvongsoontorn N, Kurisawa M (2018) Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol)–green tea catechin conjugate for cancer therapy. Adv Mater 30(14):1706963. https://doi.org/10.1002/adma.201706963

    Article  Google Scholar 

  114. Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan M-H et al (2019) Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery. ACS Nano 13(7):7591–7602. https://doi.org/10.1021/acsnano.9b00467

    Article  Google Scholar 

  115. Valcourt DM, Dang MN, Scully MA, Day ES (2020) Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano 14(3):3378–3388. https://doi.org/10.1021/acsnano.9b09263

    Article  Google Scholar 

  116. Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M et al (2018) A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc 140(47):16264–16274. https://doi.org/10.1021/jacs.8b10021

    Article  Google Scholar 

  117. Omar R, Bardoogo YL, Corem-Salkmon E, Mizrahi B (2017) Amphiphilic star PEG-Camptothecin conjugates for intracellular targeting. J Control Release 257:76–83. https://doi.org/10.1016/j.jconrel.2016.09.025

    Article  Google Scholar 

  118. van der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85. https://doi.org/10.1016/j.jconrel.2014.07.049

    Article  Google Scholar 

  119. Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K et al (2018) Tumor cell-derived extracellular vesicle-coated nanocarriers: an efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano 12(11):10817–10832. https://doi.org/10.1021/acsnano.8b02587

    Article  Google Scholar 

  120. Nie W, Wu G, Zhang J, Huang L-L, Ding J, Jiang A et al (2020) Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed 59(5):2018–2022. https://doi.org/10.1002/anie.201912524

    Article  Google Scholar 

  121. Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B (2018) Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539(1):104–111. https://doi.org/10.1016/j.ijpharm.2018.01.034

    Article  Google Scholar 

  122. Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L et al (2019) Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano 13(9):10002–10014. https://doi.org/10.1021/acsnano.9b01740

    Article  Google Scholar 

  123. Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  Google Scholar 

  124. Kundranda MN, Niu J (2015) Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther 9:3767–3777. https://doi.org/10.2147/DDDT.S88023

    Article  Google Scholar 

  125. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives (review). Oncol Rep 38(2):611–624. https://doi.org/10.3892/or.2017.5718

    Article  Google Scholar 

  126. Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G et al (2017) Nano carriers for drug transport across the blood–brain barrier. J Drug Target 25(1):17–28. https://doi.org/10.1080/1061186X.2016.1184272

    Article  Google Scholar 

  127. Agrawal M, Ajazuddin TDK, Saraf S, Saraf S, Antimisiaris SG et al (2017) Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release 260:61–77. https://doi.org/10.1016/j.jconrel.2017.05.019

    Article  Google Scholar 

  128. Jia Y, Wang X, Hu D, Wang P, Liu Q, Zhang X et al (2019) Phototheranostics: active targeting of orthotopic glioma using biomimetic proteolipid nanoparticles. ACS Nano 13(1):386–398. https://doi.org/10.1021/acsnano.8b06556

    Article  Google Scholar 

  129. Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W et al (2018) Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 25(1):1091–1102. https://doi.org/10.1080/10717544.2018.1461955

    Article  Google Scholar 

  130. Cuggino JC, Blanco ERO, Gugliotta LM, Alvarez Igarzabal CI, Calderón M (2019) Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 307:221–246. https://doi.org/10.1016/j.jconrel.2019.06.005

    Article  Google Scholar 

  131. Niu W, Xiao Q, Wang X, Zhu J, Li J, Liang X et al (2021) A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett 21(3):1484–1492. https://doi.org/10.1021/acs.nanolett.0c04753

    Article  Google Scholar 

  132. Lee Y, Lee J, Kim M, Kim G, Choi JS, Lee M (2021) Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy. J Control Release 330:907–919. https://doi.org/10.1016/j.jconrel.2020.10.064

    Article  Google Scholar 

  133. Yim YS, Choi J-s, Kim GT, Kim CH, Shin T-H, Kim DG et al (2012) A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood–brain barrier (BBB). Chem Commun 48(1):61–63. https://doi.org/10.1039/C1CC15113D

    Article  Google Scholar 

  134. Reinholz J, Landfester K, Mailänder V (2018) The challenges of oral drug delivery via nanocarriers. Drug Deliv 25(1):1694–1705. https://doi.org/10.1080/10717544.2018.1501119

    Article  Google Scholar 

  135. Xu Y, Van Hul M, Suriano F, Préat V, Cani PD, Beloqui A (2020) Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut 69(5):911–919. https://doi.org/10.1136/gutjnl-2019-319146

    Article  Google Scholar 

  136. Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X (2020) A nanocomposite vehicle based on metal–organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl Mater Interfaces 12(20):22581–22592. https://doi.org/10.1021/acsami.0c04303

    Article  Google Scholar 

  137. Dragicevic N, Maibach H (2018) Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev 127:58–84. https://doi.org/10.1016/j.addr.2018.02.003

    Article  Google Scholar 

  138. Chen Y, Wu Y, Gao J, Zhang Z, Wang L, Chen X et al (2017) Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles. ACS Appl Mater Interfaces 9(6):5173–5180. https://doi.org/10.1021/acsami.6b15914

    Article  Google Scholar 

  139. Lu Y, Lv Y, Li T (2019) Hybrid drug nanocrystals. Adv Drug Deliv Rev 143:115–133. https://doi.org/10.1016/j.addr.2019.06.006

    Article  Google Scholar 

  140. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J et al (2020) The entry of nanoparticles into solid tumours. Nat Mater 19(5):566–575. https://doi.org/10.1038/s41563-019-0566-2

    Article  Google Scholar 

  141. Kwon IK, Lee SC, Han B, Park K (2012) Analysis on the current status of targeted drug delivery to tumors. J Control Release 164(2):108–114. https://doi.org/10.1016/j.jconrel.2012.07.010

    Article  Google Scholar 

  142. Xing-Qun, Pu Xiao-Jie, Ju Lei, Zhang Quan-Wei, Cai Yu-Qiong, Liu Han-Yu, Peng Rui, Xie Wei, Wang Zhuang, Liu Liang-Yin, Chu (2021) Novel multifunctional stimuli-responsive nanoparticles for synergetic chemo–photothermal therapy of tumors. ACS Applied Materials & Interfaces 13(24):28802–28817. https://doi.org/10.1021/acsami.1c05330

  143. Diana, Guimarães Artur, Cavaco-Paulo Eugénia, Nogueira (2021) Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics 601120571. https://doi.org/10.1016/j.ijpharm.2021.120571

  144. Michael J, Mitchell Margaret M, Billingsley Rebecca M, Haley Marissa E, Wechsler Nicholas A, Peppas Robert, Langer (2021) Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 20(2):101–124. https://doi.org/10.1038/s41573-020-0090-8

  145. Theresa M, Allen Pieter R, Cullis (2013) Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews 65(1):36–48. https://doi.org/10.1016/j.addr.2012.09.037

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sun, T. et al. (2023). Pharmaceutical Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_10

Download citation

Publish with us

Policies and ethics