Skip to main content

Primordial Black Holes

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1312 Accesses

Abstract

In this chapter I give a personal overview of the new scenario of broad mass and clustered primordial black holes that could constitute all of the dark matter, be responsible for the binary black hole events detected with gravitational waves by LIGO/Virgo interferometers, and also for the microlensing events in our galaxy detected by OGLE and GAIA. I describe their plausible origin as quantum fluctuations during inflation, their clustering and evolution since their formation at the quark-hadron transition in the early universe, as well as their signatures, both cosmological and astrophysical. I make emphasis on the fact that this scenario does not require new physics beyond the Standard Model of particle physics. I then give an overview of the extremely rich phenomenology that this scenario opens for exploration in the next few decades, where a multi-probe, multi-scale, and multi-epoch approach is required to connect the different phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott BP et al (2016) [LIGO Scientific and Virgo Collaborations], Phys Rev Lett 116(6):061102. [arXiv:1602.03837 [gr-qc]]

    Google Scholar 

  2. Hawking S (1971) Mon Not R Astron Soc 152:75

    Article  ADS  Google Scholar 

  3. Carr BJ, Hawking SW (1974) Mon Not R Astron Soc 168:399

    Article  ADS  Google Scholar 

  4. Bezrukov FL, Shaposhnikov M (2008) Phys Lett B 659:703. [arXiv:0710.3755 [hep-th]]

    Google Scholar 

  5. Ezquiaga JM, García-Bellido J, Ruiz Morales E (2018) Phys Lett B 776:345 [arXiv:1705.04861 [astro-ph.CO]]

    Google Scholar 

  6. García-Bellido J, Ruiz Morales E (2017) Phys Dark Univ 18:47. [arXiv:1702.03901 [astro-ph.CO]]

    Google Scholar 

  7. Zel’dovich YB, Novikov ID (1967) Sov Astron 10:602

    ADS  Google Scholar 

  8. Chapline GF (1975) Nature 253(5489):251

    Article  ADS  Google Scholar 

  9. Dolgov A, Silk J (1993) Phys Rev D 47:4244

    Article  ADS  Google Scholar 

  10. Carr BJ, Gilbert JH, Lidsey JE (1994) Phys Rev D 50:4853. [astro-ph/9405027]

    Google Scholar 

  11. García-Bellido J, Linde AD, Wands D (1996) Phys Rev D 54:6040. [astro-ph/9605094]

    Google Scholar 

  12. Aubourg E et al (1993) Nature 365:623

    Article  ADS  Google Scholar 

  13. Alcock C et al (1997) [MACHO Collaboration], Astrophys J 486:697. [astro-ph/9606165]

    Google Scholar 

  14. Tisserand P et al (2007) [EROS-2 Collaboration], Astron Astrophys 469:387. [astro-ph/0607207]

    Google Scholar 

  15. Wyrzykowski L et al (2010) Mon Not R Astron Soc 407:189. [arXiv:1004.5247 [astro-ph.GA]]

    Google Scholar 

  16. Wyrzykowski L et al (2011) Mon Not R Astron Soc 413:493. [arXiv:1012.1154 [astro-ph.GA]]

    Google Scholar 

  17. Wyrzykowski L et al (2011) Mon Not R Astron Soc 416:2949. [arXiv:1106.2925 [astro-ph.GA]]

    Google Scholar 

  18. Calchi S, Novati, Mirzoyan S, Jetzer P, Scarpetta G (2013) Mon Not R Astron Soc 435:1582. [arXiv:1308.4281 [astro-ph.GA]]

    Google Scholar 

  19. Ricotti M, Ostriker JP, Mack KJ (2008) Astrophys J 680:829. [arXiv:0709.0524 [astro-ph]]

    Google Scholar 

  20. Bird S, Cholis I, Muoz JB, Ali-Hamoud Y, Kamionkowski M, Kovetz ED, Raccanelli A, Riess AG (2016) Phys Rev Lett 116(20):201301. [arXiv:1603.00464 [astro-ph.CO]]

    Google Scholar 

  21. Clesse S, and García-Bellido J (2017) Phys Dark Univ 15:142. [arXiv:1603.05234 [astro-ph.CO]]

    Google Scholar 

  22. Sasaki M, Suyama T, Tanaka T, Yokoyama S (2016) Phys Rev Lett 117(6):061101. [arXiv:1603.08338 [astro-ph.CO]]

    Google Scholar 

  23. Carr B, Kuhnel F (2020) Ann Rev Nucl Part Sci 70:355. [arXiv:2006.02838 [astro-ph.CO]]

    Google Scholar 

  24. Ando K, Inomata K, Kawasaki M, Mukaida K, Yanagida TT (2018) Phys Rev D 97(12):123512. [arXiv:1711.08956 [astro-ph.CO]]

    Google Scholar 

  25. García-Bellido J, Peloso M, Unal C (2017) JCAP 1709:013. [arXiv:1707.02441 [astro-ph.CO]]

    Google Scholar 

  26. Arzoumanian Z et al (2020) [NANOGrav Collaboration], Astrophys J Lett 905(2):L34. [arXiv:2009.04496 [astro-ph.HE]]

    Google Scholar 

  27. De Luca V, Franciolini G, Riotto A (2021) Phys Rev Lett 126(4):041303. [arXiv:2009.08268 [astro-ph.CO]]

    Google Scholar 

  28. Kohri K, Terada T (2021) Phys Lett B 813:136040. [arXiv:2009.11853 [astro-ph.CO]]

    Google Scholar 

  29. Cai R, Pi S, Sasaki M (2019) Phys Rev Lett 122(20):201101. [arXiv:1810.11000 [astro-ph.CO]]

    Google Scholar 

  30. Bartolo N, De Luca V, Franciolini G, Lewis A, Peloso M, Riotto A (2019) Phys Rev Lett 122(21):211301. [arXiv:1810.12218 [astro-ph.CO]]

    Google Scholar 

  31. Unal C (2019) Phys Rev D 99(4):041301. [arXiv:1811.09151 [astro-ph.CO]]

    Google Scholar 

  32. Maggiore M et al (2020) JCAP 2003:050. [arXiv:1912.02622 [astro-ph.CO]]

    Google Scholar 

  33. Reitze D et al (2019) Bull Am Astron Soc 51:035. [arXiv:1907.04833 [astro-ph.IM]]

    Google Scholar 

  34. Kashlinsky A et al (2019) Bull Am Astron Soc 51:051. [arXiv:1903.04424 [astro-ph.CO]]

    Google Scholar 

  35. Clesse S, García-Bellido J (2018) Phys Dark Univ 22:137. [arXiv:1711.10458 [astro-ph.CO]]

    Google Scholar 

  36. Carr B, Clesse S, García-Bellido J, Kühnel F (2021) Phys Dark Univ 31:100755. [arXiv:1906.08217 [astro-ph.CO]]

    Google Scholar 

  37. Özsoy O, Parameswaran S, Tasinato G, Zavala I (2018) JCAP 1807:005. [arXiv:1803.07626 [hep-th]]

    Google Scholar 

  38. Clesse S, García-Bellido J (2015) Phys Rev D 92:023524. [arXiv:1501.07565 [astro-ph.CO]]

    Google Scholar 

  39. Fumagalli J, Renaux-Petel S, Ronayne JW, Witkowski LT (2020) arXiv:2004.08369 [hep-th]

    Google Scholar 

  40. Fumagalli J, Renaux-Petel S, Witkowski LT (2020) arXiv:2012.02761 [astro-ph.CO]

    Google Scholar 

  41. Braglia M, Chen X, Hazra DK (2021) JCAP 2103:005. [arXiv:2012.05821 [astro-ph.CO]]

    Google Scholar 

  42. Palma GA, Sypsas S, Zenteno C (2020) Phys Rev Lett 125(12):121301. [arXiv:2004.06106 [astro-ph.CO]]

    Google Scholar 

  43. Garriga J, Vilenkin A, Zhang J (2016) JCAP 1602:064. [arXiv:1512.01819 [hep-th]]

    Google Scholar 

  44. Deng H, Vilenkin A (2017) JCAP 1712:044. [arXiv:1710.02865 [gr-qc]]

    Google Scholar 

  45. Kusenko A, Sasaki M, Sugiyama S, Takada M, Takhistov V, Vitagliano E (2020) Phys Rev Lett 125:181304. [arXiv:2001.09160 [astro-ph.CO]]

    Google Scholar 

  46. Bugaev E, Klimai P (2014) Phys Rev D 90(10):103501. [arXiv:1312.7435 [astro-ph.CO]]

    Google Scholar 

  47. Linde A, Mooij S, Pajer E (2013) Phys Rev D 87(10):103506. [arXiv:1212.1693 [hep-th]]

    Google Scholar 

  48. Domcke V, Muia F, Pieroni M, Witkowski LT (2017) JCAP 1707:048. [arXiv:1704.03464 [astro-ph.CO]]

    Google Scholar 

  49. García-Bellido J, Peloso M, Unal C (2016) JCAP 1612:031. [arXiv:1610.03763 [astro-ph.CO]]

    Google Scholar 

  50. Özsoy O, Lalak Z (2021) JCAP 2101:040. [arXiv:2008.07549 [astro-ph.CO]]

    Google Scholar 

  51. Freese K, Frieman JA, Olinto AV (1990) Phys Rev Lett 65:3233

    Article  ADS  Google Scholar 

  52. Vennin V, Starobinsky AA (2015) Eur Phys J C 75:413. [arXiv:1506.04732 [hep-th]]

    Google Scholar 

  53. Pattison C, Vennin V, Assadullahi H, Wands D (2017) JCAP 1710:046. [arXiv:1707.00537 [hep-th]]

    Google Scholar 

  54. Ezquiaga JM, García-Bellido J, Vennin V (2020) JCAP 2003:029. [arXiv:1912.05399 [astro-ph.CO]]

    Google Scholar 

  55. Lyth DH, Wands D (2002) Phys Lett B 524:5. https://doi.org/10.1016/S0370-2693(01)01366-1 [hep-ph/0110002]

  56. Carr B, Clesse S, García-Bellido J (2021) Mon Not R Astron Soc 501(1):1426. [arXiv:1904.02129 [astro-ph.CO]]

    Google Scholar 

  57. Kofman L, Linde AD, Starobinsky AA (1994) Phys Rev Lett 73:3195. [hep-th/9405187]

    Article  ADS  Google Scholar 

  58. Kofman L, Linde AD, Starobinsky AA (1997) Phys Rev D 56:3258. [hep-ph/9704452]

    Google Scholar 

  59. Felder GN, García-Bellido J, Greene PB, Kofman L, Linde AD, Tkachev I (2001) Phys Rev Lett 87:011601. [hep-ph/0012142]

    Google Scholar 

  60. Finelli F, Brandenberger RH (1999) Phys Rev Lett 82:1362. [hep-ph/9809490]

    Google Scholar 

  61. Bassett BA, Tamburini F, Kaiser DI, Maartens R (1999) Nucl Phys B 561:188. [hep-ph/9901319]

    Google Scholar 

  62. Jedamzik K, Sigl G (2000) Phys Rev D 61:023519. [hep-ph/9906287]

    Google Scholar 

  63. Bassett BA, Viniegra F (2000) Phys Rev D 62:043507. [hep-ph/9909353]

    Google Scholar 

  64. Martin J, Papanikolaou T, Vennin V (2020) JCAP 2001:024. [arXiv:1907.04236 [astro-ph.CO]]

    Google Scholar 

  65. Auclair P, Vennin V (2021) JCAP 2102:038. [arXiv:2011.05633 [astro-ph.CO]]

    Google Scholar 

  66. Papanikolaou T, Vennin V, Langlois D (2021) JCAP 2103:053. [arXiv:2010.11573 [astro-ph.CO]]

    Google Scholar 

  67. Jedamzik K, Niemeyer JC (1999) Phys Rev D 59:124014. [astro-ph/9901293]

    Google Scholar 

  68. Rubin SG, Khlopov MY, Sakharov AS (2000) Grav Cosmol 6:51. [hep-ph/0005271]

    Google Scholar 

  69. Davoudiasl H (2019) Phys Rev Lett 123(10):101102. [arXiv:1902.07805 [hep-ph]]

    Google Scholar 

  70. Nayak B, Singh LP (2012) Int J Theor Phys 51:1386. [arXiv:0905.3657 [gr-qc]]

    Google Scholar 

  71. Green AM, Liddle AR, Riotto A (1997) Phys Rev D 56:7559. [astro-ph/9705166]

    Google Scholar 

  72. Jenkins AC, Sakellariadou M (2020) arXiv:2006.16249 [astro-ph.CO]

    Google Scholar 

  73. Deng H, Garriga J, Vilenkin A (2017) JCAP 1704:050. [arXiv:1612.03753 [gr-qc]]

    Google Scholar 

  74. Liu J, Guo ZK, Cai RG (2020) Phys Rev D 101(2):023513. [arXiv:1908.02662 [astro-ph.CO]]

    Google Scholar 

  75. Ferrer F, Masso E, Panico G, Pujolas O, Rompineve F (2019) Phys Rev Lett 122(10):101301. https://doi.org/10.1103/PhysRevLett.122.101301 [arXiv:1807.01707 [hep-ph]]

  76. Ge S (2020) Phys Dark Univ 27:100440 [arXiv:1905.12182 [hep-ph]]

    Google Scholar 

  77. Diaz-Gil A, García-Bellido J, Garcia Perez M, Gonzalez-Arroyo A (2008) Phys Rev Lett 100:241301. [arXiv:0712.4263 [hep-ph]]

    Google Scholar 

  78. Saga S, Tashiro H, Yokoyama S (2020) JCAP 2005:039. [arXiv:2002.01286 [astro-ph.CO]]

    Google Scholar 

  79. García-Bellido J (2017) J Phys Conf Ser 840:012032. [arXiv:1702.08275 [astro-ph.CO]]

    Google Scholar 

  80. Gamow G (1946) Phys Rev 70:572

    Article  ADS  Google Scholar 

  81. Chiba T, Yokoyama S (2017) PTEP 2017:083E01. [arXiv:1704.06573 [gr-qc]]

    Google Scholar 

  82. De Luca V, Desjacques V, Franciolini G, Malhotra A, Riotto A (2019) JCAP 1905:018. [arXiv:1903.01179 [astro-ph.CO]]

    Google Scholar 

  83. García-Bellido J, Nuño Siles JF, Ruiz Morales E (2021) Phys Dark Univ 31:100791. [arXiv:2010.13811 [astro-ph.CO]]

    Google Scholar 

  84. Abbott R et al (2020) [LIGO Scientific and Virgo Collaborations], GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. arXiv:2010.14527 [gr-qc]

    Google Scholar 

  85. Abbott R et al (2020) [LIGO Scientific and Virgo Collaborations], Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. arXiv:2010.14533 [astro-ph.HE]

    Google Scholar 

  86. Clesse S, García-Bellido J (2020) GW190425, GW190521 and GW190814: Three candidate mergers of primordial black holes from the QCD epoch. arXiv:2007.06481 [astro-ph.CO]

    Google Scholar 

  87. Abbott BP et al (2019) [LIGO Scientific and Virgo Collaborations], Astrophys J Lett 882:L24. [arXiv:1811.12940 [astro-ph.HE]]

    Google Scholar 

  88. Trashorras M, García-Bellido J, Nesseris S (2021) Universe 7:18. [arXiv:2006.15018 [astro-ph.CO]]

    Google Scholar 

  89. García-Bellido J, Nesseris S (2017) Phys Dark Univ 18:123. [arXiv:1706.02111 [astro-ph.CO]]

    Google Scholar 

  90. García-Bellido J, Nesseris S (2018) Phys Dark Univ 21:61. [arXiv:1711.09702 [astro-ph.HE]]

    Google Scholar 

  91. Wyrzykowski L, Mandel I (2020) Astron Astrophys 636:A20. [arXiv:1904.07789 [astro-ph.SR]]

    Google Scholar 

  92. Montanari F, Barrado D, García-Bellido J (2019) Mon Not R Astron Soc 490:5647. [arXiv:1907.09298 [astro-ph.GA]]

    Google Scholar 

  93. Montanari F, García-Bellido J (2020) Mass classification of dark matter perturbers of stellar tidal streams. arXiv:2012.11482 [astro-ph.GA]

    Google Scholar 

  94. Ali-Haimoud Y, Kamionkowski M (2017) Phys Rev D 95:043534. [arXiv:1612.05644 [astro-ph.CO]]

    Google Scholar 

  95. Poulin V, Serpico PD, Calore F, Clesse S, Kohri K (2017) Phys Rev D 96:083524. [arXiv:1707.04206 [astro-ph.CO]]

    Google Scholar 

  96. García-Bellido J, Clesse S (2018) Phys Dark Univ 19:144. [arXiv:1710.04694 [astro-ph.CO]]

    Google Scholar 

  97. Calcino J, García-Bellido J, Davis TM (2018) Mon Not R Astron Soc 479:2889. [arXiv:1803.09205 [astro-ph.CO]]

    Google Scholar 

  98. Fleury P, García-Bellido J (2020) Phys Dark Univ 29:100567. [arXiv:1907.05163 [astro-ph.CO]]

    Google Scholar 

  99. García-Bellido J, Clesse S, Fleury P (2018) Phys Dark Univ 20:95. [arXiv:1712.06574 [astro-ph.CO]]

    Google Scholar 

  100. Mediavilla E, Jiménez-Vicente J, Muñoz JA, Vives-Arias H, Calderón-Infante J (2017) Astrophys J Lett 836:L18. [arXiv:1702.00947 [astro-ph.GA]]

    Google Scholar 

  101. Hawkins MRS (2020) Astron Astrophys 633:A107. [arXiv:2001.07633 [astro-ph.GA]]

    Google Scholar 

  102. Scholtz J, Unwin J (2020) Phys Rev Lett 125:051103. [arXiv:1909.11090 [hep-ph]]

    Google Scholar 

  103. Clesse S, García-Bellido J (2017) Phys Dark Univ 18:105. [arXiv:1610.08479 [astro-ph.CO]]

    Google Scholar 

  104. Clesse S, García-Bellido J, Orani S (2018) Detecting the stochastic gravitational wave background from primordial black hole formation. arXiv:1812.11011 [astro-ph.CO]

    Google Scholar 

Download references

Acknowledgements

The author thanks his colleagues for endless discussions on the ideas that have helped to shape the present scenario of broad-mass and clustered PBHs as DM and acknowledges funding from the Research Project PGC2018-094773-B-C32 (MINECO-FEDER) and the Centro de Excelencia Severo Ochoa Program SEV-2016-0597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan García-Bellido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

García-Bellido, J. (2022). Primordial Black Holes. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_27

Download citation

Publish with us

Policies and ethics