Skip to main content

Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (KV7.1) Potassium Channels

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1349))

Abstract

KCNQ1 (KV7.1) K+ channels are expressed in multiple tissues, including the heart, pancreas, colon, and inner ear. The gene encoding the KCNQ1 protein was discovered by a positional cloning effort to determine the genetic basis of long QT syndrome, an inherited ventricular arrhythmia that can cause sudden death. Mutations in KCNQ1 can also cause other types of arrhythmia (i.e., short QT syndrome, atrial fibrillation) and the gene may also have a role in diabetes and certain cancers. KCNQ1 α-subunits can partner with accessory β-subunits (KCNE1–KCNE5) to form K+-selective channels that have divergent biophysical properties. In the heart, KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct IKs, a very slowly activating delayed rectifier K+ current. KV7.1 channels are highly regulated by PIP2, calmodulin, and phosphorylation, and rich pharmacology includes blockers and gating modulators. Recent biophysical studies and a cryo-EM structure of the KCNQ1-calmodulin complex have provided new insights into KV7.1 channel function, and how interactions between KCNQ1 and KCNE subunits alter the gating properties of heteromultimeric channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noble D, Tsien RW (1969) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol 200:205–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Jaeger JM, Gibbons WR (1985) A re-examination of late outward plateau currents of cardiac Purkinje fibers. Am J Phys 249:H108–H121

    CAS  Google Scholar 

  3. Hume JR, Giles W, Robinson K, Shibata EF, Nathan RD, Kanai K et al (1986) A time- and voltage-dependent K+ current in single cardiac cells from bullfrog atrium. J Gen Physiol 88(6):777–798

    Article  CAS  PubMed  Google Scholar 

  4. Shrier A, Clay JR (1986) Repolarization currents in embryonic chick atrial heart cell aggregates. Biophys J 50:861–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current: differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  6. Sanguinetti MC, Jurkiewicz NK (1991) IK is comprised of two components in Guinea pig atrial cells. Am J Phys 260:H393–H399

    CAS  Google Scholar 

  7. Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91:3438–3442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  9. Trudeau M, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  CAS  PubMed  Google Scholar 

  10. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium channel. Nature 384:78–80

    Article  CAS  PubMed  Google Scholar 

  11. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL et al (1996) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83

    Article  CAS  PubMed  Google Scholar 

  12. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    Article  CAS  PubMed  Google Scholar 

  13. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R (1990) Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci U S A 87:2975–2979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ et al (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  15. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R et al (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    Article  CAS  PubMed  Google Scholar 

  16. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ et al (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55

    Article  CAS  PubMed  Google Scholar 

  17. Kananura C, Biervert C, Hechenberger M, Engels H, Steinlein OK (2000) The new voltage gated potassium channel KCNQ5 and neonatal convulsions. Neuroreport 11:2063–2067

    Article  CAS  PubMed  Google Scholar 

  18. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S et al (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    Article  CAS  PubMed  Google Scholar 

  19. Bleich M, Warth R (2000) The very small-conductance K+ channel KvLQT1 and epithelial function. Pflugers Arch 440:202–206

    CAS  PubMed  Google Scholar 

  20. Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T et al (1991) Cellular localization of rat IsK protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172

    Article  CAS  PubMed  Google Scholar 

  21. Demolombe S, Franco D, de Boer P, Kuperschmidt S, Roden D, Pereon Y et al (2001) Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol 280:C359–C372

    Article  CAS  PubMed  Google Scholar 

  22. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R et al (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199

    Article  CAS  PubMed  Google Scholar 

  23. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R et al (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A 102:17864–17869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Preston P, Wartosch L, Gunzel D, Fromm M, Kongsuphol P, Ousingsawat J et al (2010) Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl transport. J Biol Chem 285:7165–7175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Julio-Kalajzic F, Villanueva S, Burgos J, Ojeda M, Cid LP, Jentsch TJ et al (2018) K2P TASK-2 and KCNQ1-KCNE3 K(+) channels are major players contributing to intestinal anion and fluid secretion. J Physiol 596:393–407

    Article  CAS  PubMed  Google Scholar 

  26. Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH, Nitschke R et al (2001) The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 120:1363–1371

    Article  CAS  PubMed  Google Scholar 

  27. Vucic E, Alfadda T, MacGregor GG, Dong K, Wang T, Geibel JP (2015) Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflugers Arch 467:1457–1468

    Article  CAS  PubMed  Google Scholar 

  28. Heitzmann D, Grahammer F, von Hahn T, Schmitt-Graff A, Romeo E, Nitschke R et al (2004) Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J Physiol 561:547–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pusch M (1998) Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK. Pflugers Arch 437:172–174

    Article  CAS  PubMed  Google Scholar 

  30. Tristani-Firouzi M, Sanguinetti MC (1998) Voltage-dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunits. J Physiol 510(Pt 1):37–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ma LJ, Ohmert I, Vardanyan V (2011) Allosteric features of KCNQ1 gating revealed by alanine scanning mutagenesis. Biophys J 100:885–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cui J, Kline RP, Pennefather P, Cohen IS (1994) Gating of I-Sk expressed in Xenopus-oocytes depends on the amount of messenger-Rna injected. J Gen Physiol 104:87–105

    Article  CAS  PubMed  Google Scholar 

  33. Tzounopoulous T, Maylie J, Adelman JP (1998) Gating of lsK channels expressed in Xenopus oocytes. Biophys J 74:2299–2305

    Article  Google Scholar 

  34. Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D, Gerwert K et al (2011) Structural basis of slow activation gating in the cardiac I-Ks channel complex. Cell Physiol Biochem 27:443–452

    Article  CAS  PubMed  Google Scholar 

  35. Silva J, Rudy Y (2005) Subunit interaction determines I-Ks participation in cardiac repolarization and repolarization reserve. Circulation 112:1384–1391

    Article  PubMed Central  PubMed  Google Scholar 

  36. Osteen JD, Sampson KJ, Kass RS (2010) The cardiac I-Ks channel, complex indeed. Proc Natl Acad Sci U S A 107:18751–18752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Werry D, Eldstrom J, Wang ZR, Fedida D (2013) Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I-Ks. Proc Natl Acad Sci U S A 110:E996–E1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Xu Y, Wang Y, Meng XY, Zhang M, Jiang M, Cui M et al (2013) Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations. Biophys J 105:2461–2473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Barro-Soria R, Rebolledo S, Liin SI, Perez ME, Sampson KJ, Kass RS et al (2014) KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nat Commun 5:3750

    Article  PubMed  Google Scholar 

  40. Xu JJ, Rudy Y (2018) Effects of beta-subunit on gating of a potassium ion channel: molecular simulations of cardiac IKs activation. J Mol Cell Cardiol 124:35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ramasubramanian S, Rudy Y (2018) The structural basis of IKs ion-channel activation: mechanistic insights from molecular simulations. Biophys J 114:2584–2594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Abitbol I, Peretz A, Lerche C, Busch AE, Attali B (1999) Stilbenes and fenamates rescue the loss of I-KS channel function induced by an LQT5 mutation and other IsK mutants. EMBO J 18:4137–4148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pusch M, Magrassi R, Wollnik B, Conti F (1998) Activation and inactivation of homomeric KvLQT1 potassium channels. Biophys J 75:785–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gibor G, Yakubovich D, Rosenhouse-Dantsker A, Peretz A, Schottelndreier H, Seebohm G et al (2007) An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys J 93:4159–4172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Seebohm G, Scherer CR, Busch AE, Lerche C (2001) Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome. J Biol Chem 276:13600–13605

    Article  CAS  PubMed  Google Scholar 

  46. Seebohm G, Westenskow P, Lang F, Sanguinetti MC (2005) Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. J Physiol 563:359–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Pless SA, Galpin JD, Niciforovic AP, Kurata HT, Ahern CA (2013) Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. Elife 2:e01289

    Article  PubMed Central  PubMed  Google Scholar 

  48. Hoshi T, Armstrong CM (2013) C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? J Gen Physiol 141:151–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kurata HT, Fedida D (2006) A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol 92:185–208

    Article  CAS  PubMed  Google Scholar 

  50. Starkus JG, Kuschel L, Rayner MD, Heinemann SH (1997) Ion conduction through C-type inactivated shaker channels. J Gen Physiol 110:539–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hou PP, Eldstrom J, Shi JY, Zhong L, McFarland K, Gao Y et al (2017) Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening. Nat Commun 8(1):1730

    Article  PubMed Central  PubMed  Google Scholar 

  52. Pusch M, Ferrera L, Friedrich T (2001) Two open states and rate-limiting gating steps revealed by intracellular Na+ block of human KCNQ1 and KCNQ1/KCNE1 K+ channels. J Physiol 533:135–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Seebohm G, Sanguinetti MC, Pusch M (2003) Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. J Physiol 552:369–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Pusch M, Bertorello L, Conti F (2000) Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels. Biophys J 78:211–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J et al (2001) Role of KCNE1-dependent K(+) fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011

    Article  CAS  PubMed  Google Scholar 

  56. Westhoff M, Eldstrom J, Murray CI, Thompson E, Fedida D (2019) I-Ks ion-channel pore conductance can result from individual voltage sensor movements. Proc Natl Acad Sci U S A 116:7879–7888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Thompson E, Eldstrom J, Westhoff M, McAfee D, Balse E, Fedida D (2017) cAMP-dependent regulation of IKs single-channel kinetics. J Gen Physiol 149:781–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tinel N, Diochot S, Lauritzen I, Barhanin J, Lazdunski M, Borsotto M (2000) M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett 480:137–141

    Article  CAS  PubMed  Google Scholar 

  59. Melman YF, Domenech A, de la Luna S, McDonald TV (2001) Structural determinants of KvLQT1 control by the KCNE family of proteins. J Biol Chem 276:6439–6444

    Article  CAS  PubMed  Google Scholar 

  60. Mazhari R, Nuss HB, Armoundas AA, Winslow RL, Marban E (2002) Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. J Clin Invest 109:1083–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrom T, Jorgensen NK, Olesen SP et al (2002) KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol 542:119–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP (2002) KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J 83:1997–2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Seebohm G, Sanguinetti MC, Pusch M (2003) Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. J Physiol Lond 552:369–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang KW, Goldstein SAN (1995) Subunit composition of minK potassium channels. Neuron 14:1303–1309

    Article  CAS  PubMed  Google Scholar 

  65. Chen H, Sesti F, Goldstein SA (2003) Pore- and state-dependent cadmium block of I(Ks) channels formed with MinK-55C and wild-type KCNQ1 subunits. Biophys J 84:3679–3689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Morin TJ, Kobertz WR (2008) Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc Natl Acad Sci U S A 105:1478–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kang C, Tian C, Sonnichsen FD, Smith JA, Meiler J, George AL Jr et al (2008) Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47:7999–8006

    Article  CAS  PubMed  Google Scholar 

  68. Sun J, MacKinnon R (2017) Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169:1042–1050.e9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Morokuma J, Blackiston D, Levin M (2008) KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21:357–372

    Article  CAS  PubMed  Google Scholar 

  70. Nakajo K, Kubo Y (2010) A role of the voltage-sensor domain in the modulation of KCNQ1 channel by KCNE subunits. J Physiol Sci 60:S7

    Google Scholar 

  71. Zheng RJ, Thompson K, Obeng-Gyimah E, Alessi D, Chen J, Cheng HY et al (2010) Analysis of the interactions between the C-terminal cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Biochem J 428:75–84

    Article  CAS  PubMed  Google Scholar 

  72. Wrobel E, Rothenberg I, Krisp C, Hundt F, Fraenzel B, Eckey K et al (2016) KCNE1 induces fenestration in the Kv7.1/KCNE1 channel complex that allows for highly specific pharmacological targeting. Nat Commun 7:12795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR et al (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  CAS  PubMed  Google Scholar 

  74. Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284:9140–9146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Li Y, Chen L, Kass RS, Dessauer CW (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 287:29815–29824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ghosh S, Nunziato DA, Pitt GS (2006) KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ Res 98:1048–1054

    Article  CAS  PubMed  Google Scholar 

  77. Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP et al (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A 110:13180–13185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zaydman MA, Cui J (2014) PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kasimova MA, Zaydman MA, Cui J, Tarek M (2015) PIP(2)-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6. Sci Rep 5:7474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Warth R, Riedemann N, Bleich M, Van Driessche W, Busch AE, Greger R (1996) The cAMP-regulated and 293B-inhibited K+ conductance of rat colonic crypt base cells. Pflugers Arch 432:81–88

    Article  CAS  PubMed  Google Scholar 

  81. Kunzelmann K, Hubner M, Schreiber R, Levy-Holzman R, Garty H, Bleich M et al (2001) Cloning and function of the rat colonic epithelial K+ channel KVLQT1. J Membr Biol 179:155–164

    Article  CAS  PubMed  Google Scholar 

  82. Seebohm G, Lerche C, Pusch M, Steinmeyer K, Bruggemann A, Busch AE (2001) A kinetic study on the stereospecific inhibition of KCNQ1 and I(Ks) by the chromanol 293B. Br J Pharmacol 134:1647–1654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC (2003) Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol Pharmacol 64:70–77

    Article  CAS  PubMed  Google Scholar 

  84. Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei AD, Strutz-Seebohm N et al (2007) Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol Pharmacol 71:1503–1511

    Article  CAS  PubMed  Google Scholar 

  85. Villatoro-Gomez K, Pacheco-Rojas DO, Moreno-Galindo EG, Navarro-Polanco RA, Tristani-Firouzi M, Gazgalis D et al (2018) Molecular determinants of Kv7.1/KCNE1 channel inhibition by amitriptyline. Biochem Pharmacol 152:264–271

    Article  CAS  PubMed  Google Scholar 

  86. Gogelein H, Bruggemann A, Gerlach U, Brendel J, Busch AE (2000) Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch Pharmacol 362:480–488

    Article  CAS  PubMed  Google Scholar 

  87. Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR (2006) Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. J Membr Biol 210:183–192

    Article  CAS  PubMed  Google Scholar 

  88. Busch AE, Busch GL, Ford E, Suessbrich H, Lang H-J, Greger R et al (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br J Pharmacol 122:187–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Wang HS, Brown BS, McKinnon D, Cohen IS (2000) Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol Pharmacol 57:1218–1223

    CAS  PubMed  Google Scholar 

  90. Sun P, Wu F, Wen M, Yang X, Wang C, Li Y et al (2015) A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit. Sci Rep 5:13399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Chen J, Zhang C, Yang W, Cao Z, Li W, Chen Z et al (2015) SjAPI-2 is the first member of a new neurotoxin family with Ascaris-type fold and KCNQ1 inhibitory activity. Int J Biol Macromol 79:504–510

    Article  CAS  PubMed  Google Scholar 

  92. Chen Z, Wang B, Hu J, Yang W, Cao Z, Zhuo R et al (2013) SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms. PLoS One 8:e57529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ channels. Mol Pharmacol 53:220–230

    Article  Google Scholar 

  94. Seebohm G, Pusch M, Chen J, Sanguinetti MC (2003) Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circ Res 93:941–947

    Article  CAS  PubMed  Google Scholar 

  95. Matschke V, Piccini I, Schubert J, Wrobel E, Lang F, Matschke J et al (2016) The natural plant product Rottlerin activates Kv7.1/KCNE1 channels. Cell Physiol Biochem 40:1549–1558

    Article  CAS  PubMed  Google Scholar 

  96. Mattmann ME, Yu H, Lin Z, Xu K, Huang X, Long S et al (2012) Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator. Bioorg Med Chem Lett 22:5936–5941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Yu H, Lin Z, Mattmann ME, Zou B, Terrenoire C, Zhang H et al (2013) Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels. Proc Natl Acad Sci U S A 110:8732–8737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Xu Y, Wang Y, Zhang M, Jiang M, Rosenhouse-Dantsker A, Wassenaar T et al (2015) Probing binding sites and mechanisms of action of an I(Ks) activator by computations and experiments. Biophys J 108:62–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Wang AW, Yau MC, Wang CK, Sharmin N, Yang RY, Pless SA et al (2018) Four drug-sensitive subunits are required for maximal effect of a voltage sensor-targeted KCNQ opener. J Gen Physiol 150:1432–1443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Wu W, Gardner A, Sanguinetti MC (2015) Concatenated hERG1 tetramers reveal stoichiometry of altered channel gating by RPR-260243. Mol Pharmacol 87:401–409

    Article  PubMed Central  PubMed  Google Scholar 

  101. Ma D, Wei H, Lu J, Huang D, Liu Z, Loh LJ et al (2015) Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 6:39

    Article  PubMed Central  PubMed  Google Scholar 

  102. Kanaporis G, Kalik ZM, Blatter LA (2019) Action potential shortening rescues atrial calcium alternans. J Physiol 597:723–740

    Article  CAS  PubMed  Google Scholar 

  103. Walsh KB, Kass RS (1988) Regulation of a heart potassium channel by protein kinase A and kinase C. Science 242:67–69

    Article  CAS  PubMed  Google Scholar 

  104. Kurokawa J, Motoike HK, Rao J, Kass RS (2004) Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci U S A 101:17884–17884

    Article  CAS  Google Scholar 

  105. Nicolas CS, Park KH, Harchi AE, Camonis J, Kass RS, Escande D et al (2008) I(Ks)response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 79:427–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Kurokawa J, Bankston JR, Kaihara A, Chen L, Furukawa T, Kass RS (2009) KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the I-Ks potassium channel. Channels 3:16–24

    Article  CAS  PubMed  Google Scholar 

  107. Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR et al (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    Article  CAS  PubMed  Google Scholar 

  108. Piccini I, Fehrmann E, Frank S, Muller FU, Greber B, Seebohm G (2017) Adrenergic stress protection of human iPS cell-derived cardiomyocytes by fast K(v)7.1 recycling. Front Physiol 8:705

    Article  PubMed Central  PubMed  Google Scholar 

  109. Almilaji A, Pakladok T, Munoz C, Elvira B, Sopjani M, Lang F (2014) Upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels 8:222–229

    Article  PubMed Central  PubMed  Google Scholar 

  110. Wilmes J, Haddad-Tovolli R, Alesutan I, Munoz C, Sopjani M, Pelzl L et al (2012) Regulation of KCNQ1/KCNE1 by beta-catenin. Mol Membr Biol 29:87–94

    Article  CAS  PubMed  Google Scholar 

  111. Parks XX, Ronzier E, O-Uchi J, Lopes CM (2019) Fluvastatin inhibits Rab5-mediated IKs internalization caused by chronic Ca2+-dependent PKC activation. J Mol Cell Cardiol 129:314–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Walsh KB, Begenisich TB, Kass RS (1988) β-Adrenergic modulation in the heart: independent regulation of K and Ca channels. Pflugers Arch 411:232–234

    Article  CAS  PubMed  Google Scholar 

  113. Matavel A, Lopes CMB (2009) PKC activation and PIP2 depletion underlie biphasic regulation of IKs by Gq-coupled receptors. J Mol Cell Cardiol 46:704–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Loussouarn G, Park KH, Bellocq C, Baro I, Charpentier F, Escande D (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J 22:5412–5421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Rodriguez N, Amarouch MY, Montnach J, Piron J, Labro AJ, Charpentier F et al (2010) Phosphatidylinositol-4,5-bisphosphate (PIP2) stabilizes the open pore conformation of the Kv11.1 (hERG) channel. Biophys J 99:1110–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Li Y, Zaydman MA, Wu D, Shi JY, Guan M, Virgin-Downey B et al (2011) KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of I-Ks to modulate channel activity. Proc Natl Acad Sci U S A 108:9095–9100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Eckey K, Wrobel E, Strutz-Seebohm N, Pott L, Schmitt N, Seebohm G (2014) Novel K(v)7.1-phosphatidylinositol 4,5-bisphosphate interaction sites uncovered by charge neutralization scanning. J Biol Chem 289:22749–22758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Tobelaim WS, Dvir M, Lebel G, Cui M, Buki T, Peretz A et al (2017) Ca2+-calmodulin and PIP2 interactions at the proximal C-terminus of Kv7 channels. Channels 11:686–695

    Article  PubMed Central  PubMed  Google Scholar 

  119. Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W, Peretz A et al (2014) Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular C-terminal domain in complex with calmodulin. Structure 22:1582–1594

    Article  CAS  PubMed  Google Scholar 

  120. Taylor KC, Sanders CR (2017) Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. BBA-Biomembranes 1859:586–597

    Article  CAS  PubMed  Google Scholar 

  121. Liin SI, Ejneby MS, Barro-Soria R, Skarsfeldt MA, Larsson JE, Harlin FS et al (2015) Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac I-Ks channel. Proc Natl Acad Sci U S A 112:5714–5719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Larsson JE, Larsson HP, Liin SI (2018) KCNE1 tunes the sensitivity of K(v)7.1 to polyunsaturated fatty acids by moving turret residues close to the binding site. Elife 7:e37257

    Article  PubMed Central  PubMed  Google Scholar 

  123. Agsten M, Hessler S, Lehnert S, Volk T, Rittger A, Hartmann S et al (2015) BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (I-Ks). J Mol Cell Cardiol 89:335–348

    Article  CAS  PubMed  Google Scholar 

  124. Strigli A, Raab C, Hessler S, Huth T, Schuldt AJT, Alzheimer C et al (2018) Doxorubicin induces caspase-mediated proteolysis of KV7.1. Commun Biol 1:155

    Article  PubMed Central  PubMed  Google Scholar 

  125. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767

    Article  PubMed Central  PubMed  Google Scholar 

  126. Perrin MJ, Gollob MH (2013) Genetics of cardiac electrical disease. Can J Cardiol 29:89–99

    Article  PubMed  Google Scholar 

  127. Wu J, Ding WG, Horie M (2016) Molecular pathogenesis of long QT syndrome type 1. J Arrhythm 32:381–388

    Article  PubMed Central  PubMed  Google Scholar 

  128. Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ et al (2017) Molecular pathophysiology of congenital long QT syndrome. Physiol Rev 97:89–134

    Article  CAS  PubMed  Google Scholar 

  129. Giudicessi JR, Kullo IJ, Ackerman MJ (2017) Precision cardiovascular medicine: state of genetic testing. Mayo Clin Proc 92:642–662

    Article  PubMed  Google Scholar 

  130. Russell MW, Dick M II, Collins FS, Brody LC (1996) KVLQT1 mutations in three families with familial or sporadic long QT syndrome. Hum Mol Genet 5:1319–1324

    Article  CAS  PubMed  Google Scholar 

  131. Park KH, Piron J, Dahimene S, Merot J, Baro I, Escande D et al (2005) Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Circ Res 96:730–739

    Article  CAS  PubMed  Google Scholar 

  132. Wu J, Naiki N, Ding WG, Ohno S, Kato K, Zang WJ et al (2014) A molecular mechanism for adrenergic-induced long QT syndrome. J Am Coll Cardiol 63:819–827

    Article  CAS  PubMed  Google Scholar 

  133. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT (1997) Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 17:338–340

    Article  CAS  PubMed  Google Scholar 

  134. Bianchi L, Shen Z, Dennis AT, Priori SG, Napolitano C, Ronchetti E et al (1999) Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet 8:1499–1507

    Article  CAS  PubMed  Google Scholar 

  135. Dvir M, Strulovich R, Sachyani D, Ben-Tal Cohen I, Haitin Y, Dessauer C et al (2014) Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP(2). J Cell Sci 127:3943–3955

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Harmer SC, Wilson AJ, Aldridge R, Tinker A (2010) Mechanisms of disease pathogenesis in long QT syndrome type 5. Am J Physiol Cell Physiol 298:C263–C273

    Article  CAS  PubMed  Google Scholar 

  137. Kapplinger JD, Tseng AS, Salisbury BA, Tester DJ, Callis TE, Alders M et al (2015) Enhancing the predictive power of mutations in the C-terminus of the KCNQ1-encoded Kv7.1 voltage-gated potassium channel. J Cardiovasc Transl Res 8:187–197

    Article  PubMed Central  PubMed  Google Scholar 

  138. Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD et al (2009) Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm 6:1297–1303

    Article  PubMed Central  PubMed  Google Scholar 

  139. Lee MP, Hu R-J, Johnson LA, Feinberg AP (1997) Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet 15:181–185

    Article  PubMed  Google Scholar 

  140. Moss AJ, Robinson JL, Gessman L, Gillespie R, Zareba W, Schwartz PJ et al (1999) Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 84:876–879

    Article  CAS  PubMed  Google Scholar 

  141. Choi BR, Li W, Terentyev D, Kabakov AY, Zhong M, Rees CM et al (2018) Transient outward K(+) current (Ito) underlies the right ventricular initiation of polymorphic ventricular tachycardia in a transgenic rabbit model of long-QT syndrome type 1. Circ Arrhythm Electrophysiol 11:e005414

    Article  PubMed Central  PubMed  Google Scholar 

  142. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J et al (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    Article  CAS  PubMed  Google Scholar 

  143. Tyson J, Traneebjaerg L, Bellman S, Wren C, Taylor JF, Bathen J et al (1997) IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet 6:2179–2185

    Article  CAS  PubMed  Google Scholar 

  144. Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT (1997) Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med 336:1562–1567

    Article  CAS  PubMed  Google Scholar 

  145. Vetter DE, Mann JR, Wangemann P, Liu J, McLaughlin KJ, Lesage F et al (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17:1251–1264

    Article  CAS  PubMed  Google Scholar 

  146. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE, Franz MR et al (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci U S A 98:2526–2531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y (2008) The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105:1751–1756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397

    Article  PubMed  Google Scholar 

  149. Borggrefe M, Wolpert C, Antzelevitch C, Veltmann C, Giustetto C, Gaita F et al (2005) Short QT syndrome. Genotype-phenotype correlations. J Electrocardiol 38:75–80

    Article  PubMed Central  PubMed  Google Scholar 

  150. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E et al (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 68:433–440

    Article  CAS  PubMed  Google Scholar 

  151. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  CAS  PubMed  Google Scholar 

  152. Restier L, Cheng L, Sanguinetti MC (2008) Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels. J Physiol 586:4179–4191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Peng G, Barro-Soria R, Sampson KJ, Larsson HP, Kass RS (2017) Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations. Sci Rep 7:45911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Whittaker DG, Colman MA, Ni H, Hancox JC, Zhang H (2018) Human atrial arrhythmogenesis and sinus bradycardia in KCNQ1-linked short QT syndrome: insights from computational modelling. Front Physiol 9:1402

    Article  PubMed Central  PubMed  Google Scholar 

  155. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102

    Article  CAS  PubMed  Google Scholar 

  156. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Magi R, Reschen ME et al (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Shah UJ, Xie W, Flyvbjerg A, Nolan JJ, Hojlund K, Walker M et al (2019) Differential methylation of the type 2 diabetes susceptibility locus KCNQ1 is associated with insulin sensitivity and is predicted by CpG site specific genetic variation. Diabetes Res Clin Pract 148:189–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Lee SM, Baik J, Nguyen D, Nguyen V, Liu S, Hu Z et al (2017) Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 31:2674–2685

    Article  CAS  PubMed  Google Scholar 

  159. Than BL, Goos JA, Sarver AL, O’Sullivan MG, Rod A, Starr TK et al (2014) The role of KCNQ1 in mouse and human gastrointestinal cancers. Oncogene 33:3861–3868

    Article  CAS  PubMed  Google Scholar 

  160. Li R, Miao J, Tabaran AF, O’Sullivan MG, Anderson KJ, Scott PM et al (2018) A novel cancer syndrome caused by KCNQ1-deficiency in the golden Syrian hamster. J Carcinog 17:6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Fan H, Zhang M, Liu W (2018) Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma. Biochem Biophys Res Commun 503:3100–3107

    Article  CAS  PubMed  Google Scholar 

  162. den Uil SH, Coupe VM, Linnekamp JF, van den Broek E, Goos JA, Delis-van Diemen PM et al (2016) Loss of KCNQ1 expression in stage II and stage III colon cancer is a strong prognostic factor for disease recurrence. Br J Cancer 115:1565–1574

    Article  Google Scholar 

  163. Rapetti-Mauss R, Bustos V, Thomas W, McBryan J, Harvey H, Lajczak N et al (2017) Bidirectional KCNQ1:beta-catenin interaction drives colorectal cancer cell differentiation. Proc Natl Acad Sci U S A 114:4159–4164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Sanguinetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanguinetti, M.C., Seebohm, G. (2021). Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (KV7.1) Potassium Channels. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_15

Download citation

Publish with us

Policies and ethics