Skip to main content

Machine Learning and IoT-Based Ultrasonic Humidification Control System for Longevity of Fruits and Vegetables

  • Conference paper
  • First Online:
Proceedings of International Conference on Computational Intelligence

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

India wastes approximately Rs 92,651 crores worth of food due to harvest and post-harvest losses. This has an adverse effect on individual farmers who are forced to sell their harvest before it is wasted. The dominant explanation for this situation is the lack of proper storage. Previous research has shown that ultrasonic humidification has the potential to reduce these losses. But it relies on large-scale storage facilities and expensive setup and so the problems of individual farmers remain unresolved. We have boiled down the needs of a proper storage facility into two main factors—temperature and humidity. Contrary to what has been often proposed, we have used a commercial ultrasonic humidifier to create a prototype of a highly economical and portable storage facility. It can automatically optimize the temperature and humidity based on optimal storage conditions for the harvested fruit/vegetable placed inside it which is detected by a machine learning model. The IoT framework also provides visual feedback of the current humidity and temperature data. We have tested the prototype unit against conventional storage methods adopted by farmers. Our results suggest that this prototype unit when developed into a proper storage facility has the potential to reduce the post-harvest losses and the storage issues of individual farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Mohapatra, S. Mishra, S. Giri, A. Kar, Application of hurdles for extending the shelf life of fresh fruits, in Trends in Post Harvest Technology, vol. 1, no. 1, pp. 37–54, 2013. Available: https://www.researchgate.net/publication/259841724

  2. M. Qin, P. Hou, Z. Wu, J. Wang, Precise humidity control materials for autonomous regulation of indoor moisture. Build. Environ 169, 106581 (2020). https://doi.org/10.1016/j.buildenv.2019.106581

  3. B. Herna´ndez, A. Olejua, J. Olarte, Automatic humidification system to support the assessment of food drying processes, in IOP Conference Series: Materials Science and Engineering, vol. 138, p. 012019 (2016). https://doi.org/10.1088/1757-899x/138/1/012019

  4. J. Perret, A. Al-Ismaili, S. Sablani, Development of a Humidification–Dehumidification system in a Quonset greenhouse for sustainable crop production in arid regions. Biosyst. Eng. 91(3), 349–359 (2005) https://doi.org/10.1016/j.biosystemseng.2005.04.009

  5. Z. Feng, X. Zhou, S. Xu, J. Ding, S. Cao, Impacts of humidification process on in-door thermal comfort and air quality using portable ultrasonic humidifier. Build. Environ. 133, 62–72 (2018). https://doi.org/10.1016/j.buildenv.2018.02.011

  6. G. Scott, Ultrasonic Mist Maker—DIY or Buy Oct. 22 2017). Accessed: Jan. 26 2020. [Online Video]. Available: https://www.youtube.com/watch?v=aKhPj7uFD0Yt=248s

  7. A. Sain, J. Zook, B. Davy, L. Marr, A. Dietrich, Size and mineral composition of airborne particles generated by an ultrasonic humidifier. Indoor Air 28(1), 80–88 (2017). https://doi.org/10.1111/ina.12414

    Article  Google Scholar 

  8. W. Yao, D. Gallagher, L. Marr, A. Dietrich, Emission of iron and aluminum oxide particles from ultrasonic humidifiers and potential for inhalation. Water Res. 164, 114899 (2019). https://doi.org/10.1016/j.watres.2019.114899

  9. W. Yao, R. Dal Porto, D. Gallagher, A. Dietrich, Human exposure to particles at the air-water interface: influence of water quality on indoor air quality from use of ultrasonic humidifiers. Environ. Int. 143, 105902 (2020). https://doi.org/10.1016/j.envint.2020.105902

    Article  Google Scholar 

  10. S. Fabbri, S. Olsen, M. Owsianiak, Improving environmental performance of post-harvest supply chains of fruits and vegetables in Europe: potential contribution from ultrasonic humidification. J. Cleaner Prod. 182, 16–26 (2018). https://doi.org/10.1016/j.jclepro.2018.01.157

  11. M.U. Farooq, M. Waseem, S. Mazhar, A. Khairi, T. Kamal, A review on Internet of Things (IoT). Int. J. Comput. Appl. 113(1), 1–7 (2015). https://doi.org/10.5120/19787-1571

  12. J.B. Susa, Automatic room humidifier and dehumidifier controller using Arduino Uno. Int. J. Adv. Trends Comput. Sci. Eng. 9(2), 2208–2212 (2020). https://doi.org/10.30534/ijatcse/2020/198922020

    Article  Google Scholar 

  13. D. Shiffman. ml5.js: Image Classification with Mobile Net. (Aug. 1 2018). Accessed: Feb. 6 2020. [Online Video]. Available: https://www.youtube.com/watch?v=yNkAuWz5lnYamp;t=1207s

  14. ml5—A friendly machine learning library for the web. Learn.ml5js.org (2020) (Online). Available: https://learn.ml5js.org/

  15. Teachable Machine, Teachablemachine.withgoogle.com (2020) (Online). Available: https://teachablemachine.withgoogle.com/

  16. K. Weiss, T. Khoshgoftaar, D. Wang, A survey of transfer learning. J. Big Data 3(1) (2016). https://doi.org/10.1186/s40537-016-0043-6

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gautham, A.K., Mujahid, A.A., Kanagaraj, G., Kumaraguruparan, G. (2022). Machine Learning and IoT-Based Ultrasonic Humidification Control System for Longevity of Fruits and Vegetables. In: Tiwari, R., Mishra, A., Yadav, N., Pavone, M. (eds) Proceedings of International Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3802-2_7

Download citation

Publish with us

Policies and ethics